ﬂ/ﬂ HEWLETT

PACKARD

NS-ARPA/1000

User/Programmer Reference Manual

Software Services and Technology Division
11000 Wolfe Road
Cupertino, CA 95014-9804

Manual Part No. 91790-90020 Printed in U.S.A. April 1995
E0495 Seventh Edition

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment
that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced, or translated to another
language without the prior written consent of Hewlett-P ackard Company.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at

DFARs 252.227.7013.

Copyright © 1986-1993, 1995 by Hewlett-Packard Company

Printing History

The Printing History below identifies the edition of this manual and any updates that are included. Periodi-
cally, update packages are distributed which contain replacement pages to be merged into the manual,
including an updated copy of this printing history page. Also, the update may contain write-in instructions.

Each reprinting of this manual will incorporate all past updates; however, no new information will be added.
Thus, the reprinted copy will be identical in content to prior printings of the same edition with its user-in-
serted update information. New editions of this manual will contain new information, as well as all updates.

To determine what manual edition and update is compatible with your current software revision code, refer
to the Manual Numbering File. (The Manual Numbering File is included with your software. It consists of an
“M” followed by a five digit product number.)

First Edition Feb 1986 it Rev. 2608
Update 1 Oct 1986 ... Rev. 4010
Second Edition Aug 1987 ... Rev. 5.0/5000
Update 1 Dec 1987 i Rev. 5.0/5000
Update 2 Feb 1988 Rev. 5.05/5005
Update 3 Jan 1989l Rev. 5.1/5010
Third Edition Oct 1989 Rev. 5.16/5016
Update 1 May 1990ccoiiiinnn... Rev. 5.2/5020
Fourth Edition Aug 1991 Rev. 5.24/5240
Fifth Edition Dec 1992, Rev. 6.0/6000
Sixth Edition Nov 1993, Rev. 6.1/6100
Seventh Edition Apr 1995 Rev. 6.2/6200

3/4

Preface

Hewlett-Packard Network Services for the HP 1000 (NS-ARPA/1000) provides the networking
software that allows HP computer systems to communicate with each other.

Audience

The NS-ARPA/1000 User/Programmer Reference Manual is the primary reference source for users
and programmers who will be writing or maintaining programs for NS-ARPA/1000 systems. The
NS-ARPA/1000 User/Programmer Reference Manual should also be read by Network Managers
before designing an NS network so that they will have a clear understanding of the full
implications of various NS-ARPA/1000 functions and features.

Assumptions

Since the services described in this manual are both interactive and programmatic, this manual is
intended for interactive users as well as programmers. As one of these interactive users or
programmers, you should be familiar with the operating systems on the HP 1000, especially the
RTE-A operating system. For those operations that deal with HP 3000 systems, a working
knowledge of the Multiprogramming Executive (MPE) is also recommended. For those
operations that deal with HP 9000 Series 800 systems, a working knowledge of the HP-UX
operating system is also recommended. Network Managers, who have responsibility for
generating and initializing nodes and configuring networks, should consult the NS-4RPA/1000
Generation and Initialization Manual, part number 91790-90030 and the NS-ARPA/1000
Maintenance and Principles of Operation Manual, part number 91790-90031.

Organization

Section 1 Introduction—presents an overview of NS-ARPA/1000, discussing the
architecture of the network and introducing the User Services. This
section also discusses the relation between NS-ARPA/1000 and its
predecessor, DS/1000-IV. You are encouraged to read Section 1 before
using the other sections for reference.

Section 2 TELNET—describes the commands, format, parameters and usage of the
user interface program TELNET. TELNET provides a virtual terminal
connection to any remote NS-ARPA/1000 node in your network.

Section 3 FTP—describes the commands, format, parameters, and usage of the File
Transfer Protocol (FTP). FTP allows you to transfer files to and from
remote nodes in your network. FTP also provides file management
operations such as changing, listing, creating, and deleting remote
directories.

Section 4 Network File Transfer—describes the commands, format, parameters and
usage of the file copying program DSCOPY. DSCOPY allows you to copy
files from one node to another in your network.

Section 5 Network Interprocess Communication—describes a set of programmatic
calls that provide a data exchange interface between peer processes
located at the same or different nodes in your network. Their format,
parameters and usage are explained.

Section 6 Remote Process Management—describes a set of programmatic calls that
provide remote scheduling, controlling, and terminating of programs
located at the same or different HP 1000 nodes in your network. The
format, parameters and usage are explained.

Appendix A FTP-NFT Comparison—compares some of the features of FTP and NFT.

Appendix B Porting NetIPC Programs—explains the differences and provides
programming information to help you successfully port NetIPC programs
between NS-ARPA/1000 and NS/9000 Series 800 systems.

Glossary Defines NS-ARPA/1000 terms.

Bibliography Other NS-ARPA/1000, NS/9000 Series 800, RTE-A, DS, DS/1000-1V,
NS3000/V, NS3000/XL, X.25, and PC manuals are referred to by title
within the text of this manual. To obtain the part numbers of these
manuals, refer to this appendix.

Guide to NS-ARPA/1000 Manuals
The following are brief descriptions of the manuals included with the NS-ARPA/1000 product.
91790-90060 BSD IPC Reference Manual for NS-ARPA/1000 and ARPA/1000

Describes Berkeley Software Distribution Interprocess Communication (BSD IPC) on the
HP 1000. BSD IPC on the HP 1000 offers a programmatic interface on the HP 1000 for
multi-vendor connectivity to systems that offers BSD IPC 4.3.

91790-90020 NS-ARPA/1000 User/Programmer Reference Manual

Describes the user-level services provided by NS-ARPA/1000. The NS services are network file
transfer (NFT), network interprocess communication (NetIPC), and remote program
management (RPM). The ARPA services are TELNET and FTP. Because these are interactive
and programmatic services, this manual is intended for interactive users as well as programmers.
It should also be read by Network Managers before designing an NS-ARPA/1000 network so that
they will have a clear understanding of the full implications of various NS-ARPA/1000 functions
and features.

91790-90050 NS-ARPA/1000 DS/1000-IV Compatible Services Reference Manual

Describes the user-level services provided by the DS/1000-1V backward compatible services.
These services are Remote File Access (RFA), DEXEC, REMAT, RMOTE,
program-to-program communication (PTOP), utility subroutines, remote I/O mapping, remote
system download to memory-based DS/1000-IV nodes only, and remote virtual control panel.

91790-90030 NS-ARPA/1000 Generation and Initialization Manual

Describes the tasks required to install, generate and initialize NS-ARPA/1000. This manual is
intended for the Network Manager. Before reading this manual, the Network Manager should
read the NS-ARPA/1000 User/Programmer Reference Manual to gain an understanding of the
NS-ARPA/1000 user-level services. The Network Manager should also be familiar with the
RTE-A operating system and system generation procedure.

91790-90031 NS-ARPA/1000 Maintenance and Principles of Operation Manual

Describes the NS-ARPA/1000 network maintenance utilities, troubleshooting techniques and the
internal operation of NS-ARPA/1000. The Network Manager should use this manual in
conjunction with the NS-4ARPA/1000 Generation and Initialization Manual. This manual may also
be used by advanced users to troubleshoot their applications.

91790-90040 NS-ARPA/1000 Quick Reference Guide

Lists and briefly describes the interactive and programmatic services described in the
NS-ARPA/1000 User/Programmer Reference Manual and the NS-ARPA/1000 DS/1000-1V
Compatible Services Reference Manual. The purpose of this guide is to provide a quick reference
for users who are already familiar with the concepts and syntax presented in those two manuals.

The NS-ARPA/1000 Quick Reference Guide also contains abbreviated syntax for certain programs
and utilities described in the NS-ARPA/1000 Generation and Initialization Manual and the
NS-ARPA/1000 Maintenance and Principles of Operation Manual. For your convenience, the
NS-ARPA/1000 Quick Reference Guide also contains a master index of NS-ARPA/1000 manuals.
This is a combined index from the NS-ARPA/1000 manuals to help you find information that may
be in more than one manual.

91790-90045 NS-ARPA/1000 Error Message and Recovery Manual

Lists and explains, in tabular form, all of the error codes and messages that can be generated by
NS-ARPA/1000. This manual should be consulted by programmers and users who will be writing
or maintaining programs for NS-ARPA/1000 systems. Because it contains error messages
generated by the NS-ARPA/1000 initialization program NSINIT and other network management
programs, it should be consulted by Network Managers.

91790-90054 File Server Reference Guide for NS-ARPA/1000 and ARPA/1000

Describes information on using and administering the HP 1000 file server, including runstring
parameters, files needed for configuration, troubleshooting guidelines, and error messages.

5958-8523 NS Message Formats Reference Manual

Describes data communication messages and headers passed between computer systems
communicating over Distributed System (DS) and Network Services (NS) links.

5958-8563 NS Cross-System NFT Reference Manual

Provides cross-system NFT information. It is a generic manual that is a secondary reference
source for programmers and operators who will be using NFT on NS-ARPA/1000, NS3000/V,

NS3000/XL, NS/9000, NS for the DEC VAX* computer, and PC (PC NFT on HP OfficeShare
Network). Information provided in this manual includes file name and login syntax at all of the
systems on which NS NFT is implemented, a brief description of the file systems used by each of
these computers, and end-to-end mapping information for each supported source/target
configuration.

“DEC and VAX are U.S. registered trademarks of Digital Equipment Corporation.

Conventions Used in this Manual

NOTATION DESCRIPTION

nonitalics Words in syntax statements that are not in italics must be entered exactly
as shown. Punctuation characters other than brackets, braces, and ellipses
must also be entered exactly as shown. For example:

EXIT;

italics Words in syntax statements that are in italics denote a parameter that
must be replaced by a user-supplied variable. For example:

CLOSE filename

[] An element inside brackets in a syntax statement is optional. Several
elements stacked inside brackets means the user may select any one or
none of these elements. For example:

I:‘;‘:l User may select A or B or neither.

{ } When several elements are stacked within braces in a syntax statement,
the user must select one of those elements. For example:

A
{B} User must select A or B or C.
C

A horizontal ellipsis in a syntax statement indicates that a previous
element may be repeated. For example:

[, itemname] ... ;

In addition, vertical and horizontal ellipses may be used in examples to
indicate that portions of the example have been omitted.

, A shaded delimiter preceding a parameter in a syntax statement indicates
that the delimiter must be supplied whenever (a) that parameter is
included or (b) that parameter is omitted and any other parameter that
follows is included. For example:

itemal[, itemb] [, itemc]
means that the following are allowed:

itema

itema, itemb
itema, itemb, itemc
itema, , itemc

underlining

—

CONTROLfchar

When necessary for clarity, the symbol A may be used in a syntax
statement to indicate a required blank or an exact number of blanks. For
example:

SET [(modifier)]A(variable) ;

When necessary for clarity in an example, user input may be underlined.
For example:

NEW NAME? ALPHA

Brackets, braces or ellipses appearing in syntax or format statements that
must be entered as shown will be underlined. For example:

LET var|[[subscript]] = value

Output and input/output parameters are underlined. A notation in the
description of each parameter distinguishes input/output from output
parameters. For example:

CREATE (parml,parm2,flags,error)

The symbol : may be used to indicate a key on the terminal’s
keyboard. For example, indicates the carriage return key.

Control characters are indicated by followed by the character.
For example, [CONTROLJY means the user presses the control key and the
character Y simultaneously.

10

Table of Contents

Chapter 1
Introduction
Network ArchiteCturet e e e 1-1
NS-ARPA/I000 USET SEIVICES ..ot vtt ettt ettt e e e et et 1-3
Where Described 1-3
Services and Link Availability i e 1-5
The ARPA/Berkeley Services e 1-5
NS CommON SEIVICES .. oottt ettt et e e e e e 1-6
DS/1000-IV Compatible Servicesovuein i 1-7
Network Management Services and Features 1-7
NS-ARPA/1000 Programming Considerationscoiiiiiineennn... 1-8
NOdE NAMES . . oottt e e e e e e e e e 1-8
TP AAIESSES - . v vv ettt et e e e e 1-9
RTE-A Files and DIrectoriesc.uiunmtnn ettt 1-10
CILFile Systemttt e e e e e e 1-10
FMGR Format e e 1-10
Chapter 2
TELNET
OVETVIEW . o ottt ettt e 2-1
Application and Connectivity Considerationsciiiiinneennnon.. 2-2
Connection Considerationsuuntre et e ettt ee e 2-2
Terminal Settings to DEC VAX Computersc.ouuuiiiniinennennenn.. 2-3
Chained TELNET SeSSIONS . ..ttt ettt e eeeenns 2-3
Block Mode Considerationseuieueenn e e 2-5
Troubleshooting Hints i i i 2-5
Using TELNET o e e et 2-6
TELNET OPErationttt ettt et e ettt ettt 2-8
TELNET Commandsttt et e et 2-9
AP 2-10
CLOSE .o 2-11
ESCAPE . . 2-12
EXIT o 2-14
HE L P . . 2-15
INTERRUPT ... e e e 2-16
MODE . . 2-18
OPEN 2-19
QUIT .o e e 2-20
RUN L e 2-21
SEN D L 2-22
ST AT U S 2-24

11

Chapter 3

FTP
Invoking FTP ... e 3-2
FTP Operationttt e e e e e e 3-5
Terminating F TP ... o 3-7
Temporarily Exiting FTP 3-7
Obtaining Helpo o oo e 3-8
RTE-A CI Files and Dir€Ctorieso vttt ettt e e et 3-8
FMGR Cartridge Files i e 3-11
Transferring Files With FTP e 3-11
ASCII File Transferst e e e e 3-12
Binary File Transfers i 3-12
How FTP Treats Wild Card Charactersooiuiiiinininnenneennen.. 3-13
$VISUAL Command Editingt 3-14
FTP Commands e e e 3-15
PP 3-17
PP 3-18
.. 3-19
L e e e 3-20
APPEND . . o 3-22
ASCII . .o 3-23
BELL .. 3-24
BINARY .. 3-25
BYE . 3-27
O 3-28
CLOSE . 3-29
DEBUG ..o 3-30
DELETE . .. o 3-31
DI R L 3-32
DL 3-34
EXI T . 3-36
FORM . 3-37
GET . 3-38
GLOB .. 3-39
HASH 3-41
HELP . . 3-42
LD e 3-43
5 P 3-44
LS 3-45
MDELETE . . . o 3-47
M DI R . 3-48
MGET .. 3-49
MKDIR .. 3-51
ML S 3-52
MODE . . 3-53
M P U T . 3-54
N LIS T . 3-56
OPEN 3-58
PROM P T 3-59
PU T 3-60
P D 3-61
QUIT o e e e 3-62
QUOTE . . e e e 3-63
RECV 3-64

12

RENAME . .

USER
VERBOSE ...

Chapter 4
Network File Transfer

OVETVIEW . ottt ettt e
Three-Node Model e e
File Copying Formatso e e e
Transparent Format i e
Interchange Format
Data Interpretationttt e
Interactive Network File Transfer
Copy DeSCIIPLOT . . .ottt e
Using DSCOPY ..o
HP 1000 File Names and Logonsouiniinnini i,

HP 1000 File Masksottt e
Interrupting the Copy Processo,
EXamples
Transparent Format
Interchange Format
Optimizing Performance i e
NFT and DS/1000-IV Filesttt
DSCOPY Commandsuiiiniiiiiiit i
FCOLEAR .
FDEFAULT ...
FECHO ..

WD
P (HELP) oo
Programmatic Network File Transfer i i i,
DSCOPY .o
DSCOPYBUILD
Programmatic Examples

13

ARADARAD

Shhdbddhlom

Chapter 5
Network Interprocess Communication

OVETVIEW . o ottt ettt e 5-1
SOCKEES .t 5-2
CONNECLIONS . ..ottt ettt et et e e e e e e e e e et e e e 5-2
Naming, Socket Registry, and Path Reports 5-3
DeSCIIPLOTS . o v ottt e 5-3
Establishing @ Connectionttt 5-4
Creating a Call Socket i 5-4

Naming a Call Socket o e 5-5

Looking Up a Call Socket Namet 5-6
Requesting @ Connectionttt 5-6
Receiving a Connection Requestc. ... 5-7
Checking the Status of a Connection, 5-8
Summary of Calls Used in Connection Establishment 5-9

Sending and Receiving Data Over a Connection, 5-10
Shutting Down @ CONNECtionuuuttnntnnen i, 5-10
Timing and TIMEOULSttt e e e e e 5-11
Additional NetIPC Calls e 5-12
Summary of NetIPC Callso e 5-13
Synchronous and Asynchronous Socket Modes 5-14
Read and Write Thresholds i i 5-14
Stream Mode 5-16
NetIPC Common Parameters e i 5-17
Flags Parameterot e 5-17
Pascal Programming Language i 5-18
FORTRAN 77 Programming Languagecoooiiiiiiennenn... 5-18

Opt Parameter e 5-19
Data Parameter i e 5-21
TYPE COCTCION . . . oottt ettt e e e e e e e e e 5-23

Result Parameter i e 5-23
Socketname Parameter i e 5-23
Nodename Parameter it 5-24
Cross-System NetIPC e 5-25
Local NetIPC Calls e e e 5-25
Remote NetIPC Calls e 5-27

HP 1000 to HP 9000 NetIPC oo i 5-28

HP 1000 to HP 3000 NetIPC oo 5-29

HP 1000 to PC NetIPC o e e 5-31
Loading NetIPC Programsuuiintnt i et 5-32
Process Schedulingt e 5-32
Remote HP 1000 NetIPC Processottt 5-32
Remote HP 9000 NetIPC Process ..ot 5-33
Remote HP 3000 NetIPC Processot 5-33
Remote PC NetIPC Processc.iiiiin e 5-33
NetIPC Syntax CONVENTIONS v vttt ettt et e e e et et i ee e 5-34
IPCCONNECT ..o e e e e e 5-35
Cross-System Considerationsueuiiuneinnennennenneennenn. 5-37
IPCCONTROL ..o e e e 5-38
IPCCREATE ... o e e e 5-40
Cross-System Considerationsc..oeuuiineennenenneeneennennnn 5-41

TP D ST o 5-42
Cross-System Considerationsc..oouuiinnennennenneeneennennnn 5-44
IPCGET . 5-45

14

IPCGIVE . 5-46

IPCLOOKURP . ..o e e 5-48
Race Conditionsttt e 5-49
IPCON AME 5-50
IPCNAMERASE . . . 5-52
IPCRECYV o 5-53
Establishing a Connectionttt 5-55
Receiving Data e 5-55
Synchronous vs. Asynchronous [/O i i, 5-56
Cross-System Considerationso.ueuneuneeneennennenneennenn. 5-59
IPCRECV N .. e e 5-60
Synchronous vs. Asynchronous [/O i i 5-61
Cross-System Considerationsueuiiueinnenenenneennenn. 5-62
IPCSELECT . ..t e e e e e 5-63
IPCSelect Call Bit Map Parameterscooi i, 5-66
IPCSEND .o 5-67
Synchronous vs. Asynchronous I/O i i 5-68
Cross-System Considerationsc..oouuiinnennenenneeneennennnn 5-68
IPCSHUTDOWN . e e e e 5-70
Cross-System Considerationsc..oouuiinnennenenneennennennnn 5-71
Special NetIPC Callsot e e e e e e 5-72
ADD O P T . 5-73
AD RO . . 5-75
INITOPT .. e e e 5-77
READOPT .. 5-79
Client-Server Program Examplest 5-80
Server Program e 5-80
Explanation of Server Using IPCSelect 5-81
Client Program i e 5-82
Cross-System NetIPC Program Examples o .. 5-83
Pascal/1000 Client NetIPC Program 5-84
Pascal/1000 Server NetIPC Programt 5-93
NetIPC Program Data Example e 5-106
FORTRAN 77 Client NetIPC Program 5-107
FORTRAN 77 Server NetIPC Programo, 5-113
NS-ARPA/1000 NetIPC Program Examples i, 5-122
Pascal/1000 Example 1.o 5-122
Pascal/1000 Example 2o o 5-131
FORTRAN 77 Example 1o e e e 5-140
FORTRAN 77 Example 2 5-144
Chapter 6
Remote Process Management
OVETVIEW .« ottt ettt e 6-1
Features of RPM 6-2
Summary of RPM Calls e 6-3
RPM Programming Considerationsottt 6-4
RPM Syntax Conventionsouiouitnt et 6-5
Flags Parametert 6-5
Opt Parameter e 6-6
Result Parameter 6-6
Nodename Parameter it 6-6
RPMCONTROL ..o e e e 6-7
RPMCREATE . .o e 6-10

15

Programs Scheduled by RPM Child Programs 6-14

Terminating Dependent and Independent Child Programs 6-15
Session-Sharing Among Child Programs 6-16
RPMCREATE OPtions . . . oo ettt ettt e et e e e e e e 6-18
Adding Options Into the Opt Arrayttt 6-19
RPMCreate Option 20000—Pass String, 6-21
RPMCreate Option 23000—Set Working Directory 6-22
RPMCreate Option 23010—Restore Program 6-23
RPMCreate Option 23020—Assign Partition oo, 6-24
RPMCreate Option 23030—Change Program Priority 6-25
RPMCreate Option 23040—Modify Working Set Size 6-26
RPMCreate Option 23050—Modify VMA Size, 6-27
RPMCreate Option 23060—Modify Code Partition Size 6-28
RPMCreate Option 23070—Modify Data Partition Size 6-29
RPMCreate Option 23080—Time Scheduling oo, 6-30
RPMCreate Option 23090—Program Scheduling (Immediate No Wait) 6-32
RPMCreate Option 23100—Queue Program Scheduling 6-35
RPMCreate Option 23110—Program Scheduling 6-38
RPMGETSTRING ... e e e 6-39
RPMKILL . .o e e e e e 6-41
RPM Program Exampleso e 6-42
Pascal/1000 RPM Parent Program 6-42
Pascal/1000 RPM Child Program i, 6-55
FORTRAN 77 RPM Parent Program, 6-57
FORTRAN 77 RPM Child Program oo, 6-63
Appendix A
NFT-FTP Comparison
System TYPe ..ot e A-1
Remote Logons A-1
File TYPe .ot A-1
File Specificationo. it e A-2
File Size A-2
Record Length e A-2
Appendix B
Porting NetlPC Programs
OVETVIEW . o ottt ettt e B-1
NS-ARPA/1000 and LAN/9OOOottt e e e e e e e e B-2
Path Report and Destination Descriptors, B-2
Socket OWNErShipot e B-2
Socket Shut Down B-2
Signals ..o B-3
TCP Checksum e B-3
Remote Process Schedulingo i B-3
Remote NS-ARPA/1000 Process B-4
Remote LAN/9000 Process B-4
Case SENSILIVILY . . o .ottt ettt e e e e e e e B-4
NetIPC Callso e B-4
Unique NetIPC Callso e B-5
Common NetIPC Calls i B-5
Call COMPATISON . . v v vttt et ettt e e e e e e e e et e B-6

16

Figure 1-1
Figure 2-1
Figure 2-2
Figure 2-3
Figure 4-1
Figure 4-2
Figure 4-3
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9
Figure 5-10
Figure 5-11
Figure 5-12
Figure 5-13
Figure 6-1
Figure 6-2
Figure 6-3

Table 1-1
Table 1-2
Table 1-3
Table 2-1
Table 2-2
Table 2-3
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6
Table 4-1
Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 5-6
Table 5-7
Table 5-8
Table 5-9
Table 5-10
Table 6-1
Table 6-2
Table 6-3
Table B-1
Table B-2

List of lllustrations

OSIModel ... 1-2
Logging On to a Remote Host With TELNET 2-1
Using TELNET to Reach a Distant Host 2-3
Using Different TELNET Escape Character 2-4
Three-Node Model i, 4-2
Interchange Format i 4-3
NFT and DS/1000-IV ... o 4-14
Telephone Analogyt 5-2
IPCCreate (Processes Aand B) i, 5-5
IPCName (Process B) ...t e 5-5
IPCLOOKUP (Process A) ...ttt e 5-6
IPCConnect (Process A)ttt 5-7
IPCRecvCn (Process B) ... 5-8
IPCRec (Process A) ..ottt e 5-9
Establishing a Connection with IPCLookUp 5-9
Establishing a Connection with IPCDest 5-10
Opt Parameter Structure, 5-20
OPTARGUMENTS Structure i, 5-21
Vectored Data i 5-22
Connection Established with IPCDest and IPCConnect 5-43
Parent-Child Relationship i i, 6-1
Example of Child Programs Scheduling Another Program 6-15
Parent-Child Relationships When Session-Sharing 6-17
Tables
Supported Connectivities for the ARPA/Berkeley Services 1-5
Supported Connectivities for the NS Services 1-6
Supported Connectivities for the DS/1000-IV Services 1-7
TELNET Commandsttt 2-9
Illegal TELNET Escape Characterscoviuieuneen.... 2-12
Illegal TELNET Interrupt Characters 2-16
FTP Wild Card Charactersc.oiiiiiiiiiiniinninnnn. 3-13
FTP Commandsot 3-15
FTP File Transfer Form, Mode, Structure, and Type 3-37
FTP File Transfer Form, Mode, Structure, and Type 3-53
FTP File Transfer Form, Mode, Structure, and Type 3-72
FTP File Transfer Form, Mode, Structure, and Type 3-76
RTE File Names and Logonsc.iiiiiiniiniinnenn.n. 4-11
Descriptor Summaryiii i e 5-4
NetIPC Calls e 5-13
Special NetIPC Callsot i 5-19
NetIPC Calls Affecting The Local Process 5-26
NetIPC Calls Affecting the Remote Process 5-27
Cross-System NetIPC Calls (HP 1000—HP 9000) 5-28
Cross-System NetIPC Calls (HP 1000—HP 30003 5-29
Cross-System NetIPC Calls (HP 1000—PC) 5-31
Synchronous I/O Example 5-58
Asynchronous I/O Example 5-58
RPM Calls ..o 6-3
RPMCreate Optionsouuiinninn e 6-13
Where Sessions Are Created, 6-17
Identical NetIPC Calls i, B-5
NS-ARPA/1000 and LAN/9000 Call Comparison B-6

17

Introduction

Hewlett-Packard Network Services for the HP 1000 (NS-ARPA/1000) is a data communications
product that enables HP computer systems to exchange information and share resources in a
computer network. A computer network is a collection of many types of equipment and software.
The major components of a network are generally designated as nodes and links. A node is a
computer system with its associated operating system and communication software. A node is
connected to other nodes by communication links. Messages are sent to other computers over
these communication links which may be physically hardwired or modem connections. The link
includes the interface boards and cables.

The most significant feature of a network is resource sharing. Simply defined, resource sharing
means that elements at each node are accessible from other nodes in the network. These elements
may include disk files, printers, magnetic tapes, terminals, and other programs. One result of
resource sharing is increased efficiency. For example, greater processing efficiency can be
obtained when individual computers are dedicated to a specific type of processing. Any work of
that specific type can be routed through the network for processing at the appropriate node.

Network Architecture

The architecture of NS-ARPA is based on the seven-layer Open Systems Interconnection (OSI)
model developed by the International Standards Organization (ISO). Figure 1-1 shows the seven
layers of the OSI model. This layered design offers a structured, modular approach to the
different tasks that have to be performed in order to transmit and interpret data across a network.
It is not necessary to know these architectural details in order to use the high-level services of
NS-ARPA. However, some familiarity with the different tasks performed at the different levels
may be helpful.

In the NS-ARPA/1000 network architecture, different transmission and communications tasks are
assigned to logically distinct modules called layers or levels. The highest layer regulates user
services while the lowest layer regulates the actual transmission of bits from one computer to
another. At each layer one or more protocols are responsible for carrying out the appropriate
tasks. A protocol is a set of rules governing a particular communication task. In a logical sense,
the protocol entity at each level communicates with the corresponding protocol entity at the same
level on another node. In reality, except for the physical transmission of data to another node,
each protocol entity communicates with other protocols at the layer immediately above and below
its own.

Introduction 1-1

When a message is sent from one node to another in a network, it is first passed through the
architectural levels at the source node. At one of the middle layers, the message is broken down
into packets. At the lowest layer, the packets are actually sent across the physical communications
link.

OSI model layers

Application
Layer

Presentation
Layer

Session
Layer

Transport
Layer

Network
Layer

Data Link
Layer

Physical
Layer

Figure 1-1. OSI Model

In NS-ARPA, the Application Layer, at the top of the hierarchy, corresponds to User Services
such as file transfer, remote command execution and remote file access. The next two layers,
Presentation and Session, define functions which contribute to these high-level services. There is
no exact correspondence between NS-ARPA features and these layers, however.

The Transport Layer handles end-to-end communication between a source and a destination node,
ensuring that a message from the source arrives at its destination in the proper form. The
fragmentation of messages into packets may occur at this level. The Network Layer performs an
addressing function, making sure that packets are acquired by the node to which they are
addressed. The Data Link Layer governs the actual transmission of the packets over the
communications link. (At this level the packets are technically known as frames.) The lowest
layer, the Physical Layer, provides electrical and mechanical specifications for the transmission of
bits across the link.

For more information on lower-level functions, refer to the NS-ARPA/1000 Generation and
Initialization Manual, part number 91790-90030, and the NS-4ARPA/1000 Maintenance and
Principles of Operation Manual, part number 91790-90031.

1-2 Introduction

NS-ARPA/1000 User Services

The user-level services provided by NS-ARPA, both interactive and programmatic, are known as
User Services. The User Services available with the NS-ARPA/1000 product fit into one of the
following categories:

o ARPA/Berkeley Services. These services are TELNET, File Transfer Protocol (FTP), and
Berkeley Software Distribution Interprocess Communication (BSD IPC). The ARPA
Services on the HP 1000 use standards defined by the Advanced Research Projects Agency
(ARPA).

e NS Common Services. These services are Network File Transfer (NFT), Network Interprocess
Communication (NetIPC), and Remote Process Management (RPM).

e DS/1000-1V Compatible Services. These services are also part of the DS/1000-1V product (the
predecessor to NS-ARPA/1000). Almost all DS/1000-1V services are incorporated into
NS-ARPA/1000. You can access the corresponding NS-ARPA/1000 services with the same
commands and calls; the syntax remains the same. The DS/1000-IV Compatible Services
provide:

® RTE-RTE services that can be used for backward compatibility with DS/1000-IV nodes as
well as for NS-ARPA/1000 to NS-ARPA/1000 communication.

e Transparent File Access (TRFAS), part of RTE-RTE services. Also known as DS File
Transparency, TRFAS allows you to access HP 1000 remote files using RTE file
manipulation commands. However, because TRFAS is part of the RTE software, you
should refer to your RTE documentation for more information on the syntax used to
access remote files.

® RTE-MPE services that can be used for backward compatibility with DS/3000 nodes as
well as for NS-ARPA/1000 to NS3000/V communication.

Where Described

The NS-ARPA/1000 services (except TRFAS) are fully documented as follows:
NS-ARPA/1000 User/Programmer Reference Manual

o Virtual Terminal (TELNET). Allows you to have a virtual terminal connection using the
ARPA TELNET Protocol Standard, which is based on the Military Standard 1782
(MIL-STD-1782).

e [File Transfer Protocol (FTP). FTP is the file transfer program that uses the ARPA standard
File Transfer Protocol (FTP). FTP also allows you to perform file management operations,
such as changing, listing, creating, and deleting remote directories.

Introduction 1-3

Network File Transfer (NFT). Allows you to copy files interactively or programmatically
between NS-ARPA/1000 systems and other Hewlett-Packard computers in your network. This
manual documents only NFT between NS-ARPA/1000 nodes. NFT between different types of
systems is documented in the NS Cross-System NFT Reference Manual, part number 5958-8563.
Refer to this manual for a list of supported computers.

Network Interprocess Communication (NetIPC). Allows autonomous processes running
concurrently on different HP 1000 nodes to exchange information in a peer-to-peer manner.
NetIPC can also be used between HP 1000 and other HP computer nodes.

Remote Process Management (RPM). Allows you to schedule, control, or terminate programs
located at the same or different HP 1000 nodes in your network.

NS-ARPA/1000 BSD IPC Reference Manual

Berkeley Software Distribution Interprocess (BSD IPC). Allows client-server processes running
on different nodes to exchange information in a peer-to-peer manner. Allows BSD IPC
programs on the HP 1000 to communicate with programs on other systems that have

BSD IPC 4.3.

NS-ARPA/1000 DS/1000-1V Compatible Services Reference Manual

1-4

Remote File Access (RFA). Enables you to perform I/O operations to files and peripherals
located on HP 1000 and HP 3000 nodes.

Distributed Executive (DEXEC). Allows you to control I/O devices located at remote HP 1000
computers in your network. (DEXEC calls are the distributed equivalent to local RTE EXEC
calls.)

REMAT. Allows you to send RTE commands, or special REMAT commands, to any HP 1000
computer in your network.

RMOTE. Creates an interactive session for you on a remote HP 3000 in your network,
making your terminal appear to be directly connected to the other system.

Program-to-Program Communication (PTOP). Enables a “master” program on your local
node to exchange information with and control the execution of a “slave” program on another
HP 1000 or an HP 3000 node in your network.

Utility Subroutines. Enable you to perform special tasks such as downloading absolute or

memory-image program files to memory-based HP 1000 nodes and creating sessions at
HP 3000 nodes.

Introduction

Services and Link Availability

Whether or not a particular service is available is dependent on the type of link used to connect
your local node to the system with which you want to communicate.

The following matrices show the services that are available to the types of systems that
NS-ARPA/1000 can communicate with and the type of links that may connect them.

The first matrix shows the supported services and links for the ARPA/Berkeley Services:
TELNET, FTP, and BSD IPC.

The ARPA/Berkeley Services

Table 1-1. Supported Connectivities for the ARPA/Berkeley Services

Supported Connection from

ARPA Services/Vectra*
ARPA on SUN workstations

Link NS-ARPA/1000 to Services
IEEE 802.3 NS-ARPA/1000 FTP, TELNET, BSD IPC
ARPA/1000 FTP and TELNET
ARPA Services/XL FTP and TELNET
ARPA/9000 FTP, TELNET, BSD IPC
OfficeShare on the PC* TELNET only
Ethernet NS-ARPA/1000 FTP, TELNET, BSD IPC
ARPA/1000 FTP and TELNET
ARPA Services/XL FTP and TELNET
ARPA/9000 FTP, TELNET, BSD IPC

FTP, TELNET, BSD IPC
FTP, TELNET, BSD IPC

X.25

NS-ARPA/1000

FTP, TELNET, BSD IPC

HDLC

NS-ARPA/1000

FTP, TELNET, BSD IPC

*When running ARPA between the HP 1000 and PC (Vectra), the PC must be the local host.

Introduction

NS Common Services

The next matrix shows the supported services and links for the NS Common Services: Network
File Transfer (NFT), Network Interprocess Communication (NetIPC), and Remote Process
Management (RPM).

Table 1-2. Supported Connectivities for the NS Services

Supported Connection from
Link NS-ARPA/1000 to Services
IEEE 802.3 NS-ARPA/1000 All NS Services
NS3000/V NFT and NetlPC
NS3000/XL NFT and NetlPC
NS/9000 NFT
LAN/9000 NetlPC
OfficeShare on the PC* NFT and NetlPC
Ethernet NS-ARPA/1000 NFT and NetIPC
NS/9000 NFT
LAN/9000 NetlPC
X.25 NS-ARPA/1000 All NS Services
HDLC NS-ARPA/1000 All NS Services
*To transfer files from a PC with NFT, you must initiate the transfer from the PC.

1-6 Introduction

DS/1000-1IV Compatible Services

The next matrix shows the supported services and links for the DS/1000-IV Compatible Services:
Remote File Access (RFA), Distributed Executive (DEXEC), REMAT, REMOTE, and
Program-to-Program Communication (PTOP).

The DS Services refer to the DS/1000-IV Compatible Services (RTE-RTE) if the link is between
two HP 1000s, or the DS/1000-IV Compatible Services (RTE-MPE) if the link is between an
HP 1000 and an HP 3000.

Table 1-3. Supported Connectivities for the DS/1000-IV Services

Supported Connection from
Link NS-ARPA/1000 to Services
IEEE 802.3 NS-ARPA/1000 All DS Services, except Remote System
Download and Remote VCP (DSVCP);
RTE-A itself provides remote download
and remote VCP over IEEE 802.3 LAN.
Ethernet NS-ARPA/1000 All DS Services, except Remote System
Download and Remote VCP
X.25 NS-ARPA/1000 All DS Services, except Remote System
Download and Remote VCP
DS/1000-1V All DS Services, except Remote System
Download and Remote VCP
DS/3000 All DS Services
NS3000/V All DS Services
HDLC NS-ARPA/1000 All DS Services
DS/1000-1V All DS Services
BISYNC DS/3000 All DS Services
NS3000/V All DS Services

Network Management Services and Features

In addition to the User Services described above, NS-ARPA/1000 provides network management
and link-level services. These services are documented in the NS-ARPA/1000 Generation and
Initialization Manual and the NS-ARPA/1000 Maintenance and Principles of Operation Manual.

Introduction 1-7

NS-ARPA/1000 Programming Considerations

Programs that use the NS-ARPA Common Services must be compiled in CDS.

Note DO NOT ALTER THE PRIORITIES OF ANY NS-ARPA/1000 SYSTEM
PROGRAMS.

The priority of all the NS-ARPA/1000 programs must be higher than any user
program which makes use of their capabilities. Be sure that your own programs do
not have priorities higher than 30, that is, they are not in the range of 1 to 30. User
programs with unnecessarily high priorities can delay necessary network processing
and cause errors and/or poor performance.

For information about programming considerations for DS/1000-IV Compatible Services refer to
the NS-ARPA/1000 DS/1000-1V Compatible Services Reference Manual, part number 91790-90050.

Node Names

Each computer system, or node, in an NS or an ARPA network has a name. (Node names are
often referred to as host names in other ARPA systems.) NS-ARPA/1000 node names have the
following syntax:

node[.domain [.organization]]

When all three parts of the node name are specified, it is called a fully-qualified node name. Each
node, domain, and organization name is a maximum of 16 characters long. The maximum
total length of a fully-qualified name is 50 characters. All alphanumeric characters are allowed,
including the underscore (_) and dash (-) characters, but the first character of each field must be
alphabetic. For example: FOO.MKT.HP would indicate node FOO in the MKT group (domain) of
the HP Company (organization).

The domain and organization may be useful for grouping nodes and collections of nodes, but
they currently have no special meaning regarding the structure of the network within the
NS-ARPA/1000 product. In fact, most ARPA systems do not use the domain and
organization fields in the node (host) names. These fields will simply be ignored if you supply
them for your HP 1000 node name.

Currently, NS-ARPA/1000 does not support ARPA domain names.

When using the DS/1000-1V Compatible Services, you must use the remote node’s Router/1000
node address assigned by the Network Manager.

1-8 Introduction

IP Addresses

IP (Internet Protocol) addresses are used by nodes on the NS-ARPA network to uniquely identify
each node. An IP address consists of two parts: a network address, which identifies the network;
and a node address, which identifies a node within a network. A network address is concatenated
with a node address to form the IP address, which then uniquely identifies a node within a network
within a connected set of networks.

You may use the IP address, instead of the host node name, to identify a host when you invoke
TELNET or FTP.

An IP address has the following format:
nnn.nnn.nnn.nnn

where nnn is a number from 000 to 255, inclusive. For example: 192.1.10.15. IP addresses are
assigned to your node by your Network Manager during NS-ARPA/1000 initialization of your local
host.

To find the node name and IP address of your host and other remote hosts network, use the A
command in the NSINF information utility, such as in the example below.

Example

CI> NSINF

NSInf> é
LOCAL NAME AND ADDRESSES
Local Name: BOBCAT.MKT.HP
IP address LU Status Type Station address Multicast addresses
192.006.001.002 134 UpP LAN 08-00-09-00-02-7C 09-00-09-00-00-01
09-00-09-00-00-02

GATEWAY TABLE

Destination net Gateway Down PID Seg Size Hops Subnetwork Mask
192.006.001.000 local net LAN 1490 0 255.255.255.000
192.006.251.000 192.006.001.003 IEEE-802 1490 100 000.000.000.000
NSInf> E

CI>

Introduction 1-9

RTE-A Files and Directories

RTE-A offers two types of file systems, CI hierarchical file system and FMGR cartridge file
system. NS and ARPA Services are supported on both the CI and FMGR file systems.

For detailed information about RTE-A files and directories, refer to the RTE-A User’s Manual,
part number 92077-90002.

Cl File System

A file name on the CI hierarchical file system can have up to 16 alphanumeric characters. In
addition, a file can have a file extension, marked by a dot followed by an extension of up to four
characters. The first character of the file name must be a letter. Examples of valid CI file names
are NOTES.DOC and TEST23. Capitalization of file names is optional, because the HP 1000
always shifts the input to uppercase. On the HP 1000, the following three file names all refer to
the same file: TEST23, Test23, test23.

Note HP 9000 hosts and other UNIX™* hosts distinguish uppercase and lowercase in
file names. Hence, TEST23, Test23, and test23 refer to three different files
on those systems.

For operations involving file names on the remote side, FTP on the HP 1000
transmits the file names as received by it. For operations involving file names on
the HP 1000 side, FTP transmits the file names in lowercase to the remote side.

Discussion

FTP does not support sparse files (type 2 files with missing extents).

The maximum file path name, including the file name, is 63 characters. The file descriptor
parameters—type, size, and recordlength—are optional. If specified, they must be given in
the order shown above. To omit a parameter that is in front of another specified parameter, you
must enter a colon as a place holder for the omitted parameter, such as: FOOFILE:::4::200.
This file has type 4, and record length of 200 words; note that a colon serves as place holder for
the omitted size parameter (between 4 and 200) in addition to the colon preceding the record
length parameter.

FMGR Format

Some DS/1000-IV Compatible Services (RTE-RTE) and (RTE-MPE) cannot access non-FMGR
files. Files used for RFA, REMAT, and all of the DS/1000-IV Compatible utility subroutines must
be FMGR files. When one of these services requests a file name, it must be in FMGR format.
RTE refers to this type of file descriptor as a namr.

*UNIX is a registered trademark of UNIX Systems Laboratories Inc. in the U.S.A. and other countries.

1-10 Introduction

A namr consists of parameters that specify a file’s name, security code (if one exists), the cartridge
on which it resides, its type, size, and record length. Not all of the parameters are required.
Unless otherwise noted by the particular service, each namr parameter (with the exception of
filename) has a default value of zero.

The following is a description of the namr syntax:

filename [:security codel] [:crn] [:typel [:sizel] [:record length]

Parameters

filename

security code

crn

One to six character ASCII file name. Only printable characters can be
used (! through ~). The colon (:) and comma (,) are not allowed. The
first character of the file name must not be a blank or a number. Blanks
may not be imbedded within the file name. Characters are not
case-sensitive (all lowercase characters are upshifted). Each file name must
be unique to the disk.

File security code. Can be a positive or negative integer or two ASCII
characters represented as a positive integer. Range is from -32767 through
32767. The security code may be:

zero File is unprotected. (This is the default value.)

positive integer File is protected against alteration (write
protection) or purging. May be read with any
security code or none; may be purged only with
correct or negative (two’s complement) of
correct code.

negative integer File is fully protected (read and write protected).
May only be referenced with correct negative
code.

Cartridge identifier. May be a positive or negative integer or two ASCII
characters represented as a positive integer. Range is from -32767 through
32767. It may be:

Zero On RTE-A systems, zero indicates that the file
resides on a FMGR cartridge. (This is also true
for RTE-6/VM with the hierarchical file system.)
On other operating systems, zero indicates that
the first available cartridge that satisfies the
request will be used. (Zero is the default value
on these systems.)

positive integer Cartridge reference number by which the
cartridge is identified.

negative integer Logical unit number associated with the
cartridge.

Introduction 1-11

type

size

record length

112

Introduction

Each file descriptor has a file type parameter that indicates how the
information in the file is organized. The file type is a number and is not to
be confused with a a file type extension. There are standard RTE-A file
types defined with the following characteristics:

1

12

6004

Symbolic link files. A symbolic link is a file that indirectly refers to
another file. The symbolic link file itself contains a file descriptor
that points to the new file.

An I/O device. Type 0 is used in accessing devices with file calls.
There is no disk file or directory entry for type 0 files, and they do
not have the other properties listed in this section.

Random access files. These do not have any structure information
in them. These files contain fixed record lengths (128 words). They
can be read and written very quickly.

Fixed-length record, random access files. The record length is
defined when the files are created. They are usually user-created,
large data files.

Type 3 and higher files are variable-length and higher record,
sequential files suitable for use as text files. There is no difference
in the handling of file types 3, 4, and 7. Type 3 is for general
purpose files and can be used for text. This is the default file type
when files are created with the CR command. Type 4 is
recommended for text files. By convention, type 5 is used for
Compiler or Assembler relocatable output files, type 6 is for
program files that are memory-images of executable programs, and
type 7 is for Compiler or Assembler absolute binary output files.
Type 6 files are treated the same as type 1 files.

Type 8 and higher files are user-defined, with the following
exceptions.

Byte stream files. These do not have any structure information in
them. The directory entry for each type 12 file contains a pointer to
the last byte in the file. The fields for number of records and record
length are not defined for type 12 files.

CALLS catalog files.

Decimal number of blocks in range of 1 through 32767. Indicates the space
allocated to the file. Minimum number of blocks is 1.

Decimal number of words in range 1 through 32767. Applies only to type 2
files. Type 1 files use 128-word records and other types use variable-length
records.

TELNET

Overview

TELNET is used to communicate with another host using the TELNET protocol. The TELNET
protocol is a standard ARPA service that provides a virtual terminal connection to a remote node
on the network. TELNET enables you to logon to remote nodes on the network as if you were on
a terminal directly attached to the remote system.

TELNET makes the fact that the session is remote almost entirely transparent. You enter
commands and receive responses at your local terminal just as if your sessions were local. In
reality, input and output to your local terminal pass through a “virtual” (as opposed to real,
physical) terminal configured on the remote system. Your remote commands are transmitted over
network connections, sent to the virtual terminal, and subsequently executed on the remote
system.

TELNET is supported only on terminals directly connected or connected by modem to the MUX
for A400 computers or to the HP 12040D MUX for other A-Series computers.

Figure 2-1 shows an illustration of TELNET virtual terminal service.

Local Session Remote Session
Operating Operating
ystem ystem
Application
Process
4 > < 7y
Input/Output l Readg{éertes
tcl)?grrnfgct)én A 4 Terminal
v Operating System

e N

— ‘ ‘
fedl -~

Real Terminal Virtual Terminal
Figure 2-1. Logging On to a Remote Host With TELNET

TELNET 2-1

ESCAPE

Application and Connectivity Considerations

There are several considerations to keep in mind when using TELNET:

In certain cases, it may take longer to send terminal data from the physical terminal over the
network to the remote node than the time allowed by an application program. If the program
fails to receive the needed data, it will result in error. User written applications that are
expected to run over TELNET should be written with this in mind.

TELNET does not support HP 12040D MUX firmware with revision earlier than 5.02.

Make sure your application runs locally without errors before executing it over a TELNET
connection.

Different terminals and computers may have different configuration requirements. Refer to
the following subsections for detailed information.

Block mode applications have a limited number of supported configurations when using
TELNET. Refer to the subsection “Block Mode Considerations” which follows shortly.

Connection Considerations

Table 1-1, “Supported Connectivities for the ARPA Services,” in Section 1 of this manual lists all
the supported cross-system TELNET connectivities between an HP 1000 and other systems.

There are several connectivity considerations:

Only one connection for each TELNET user can be open at a time. HP does not support
multiple connections per each TELNET user.

A chained session is one where you have TELNET open to one computer and then you use
TELNET from that computer to access another (a third) computer. Select a unique escape
character for each host you wish to communicate with in a chained session. Refer to the
subsection, “Chained TELNET Sessions” later in this section.

For connections to any computer, always set the HP 1000 host terminal RECVPACE
configuration (receive direction) to XON/XOFF.

For block mode applications, terminals directly connected to an HP 1000 require XON/XOFF
in both the transmit and receive directions. If the terminal is not set to XON/XOFF in both
directions, a slow TELNET session may be overrun by the terminal and data will be lost or
the application may hang.

For block mode applications, terminals attached to the TS-8 with LSM 2.1 (or greater)
software require XON/XOFF in only the receive direction. If XON/XOFF is set for the
transmit direction, block mode applications may hang.

You cannot initiate a remote session to a PC. Remote sessions between an HP 1000 and PC
can only be initiated from the PC.

When connecting to a remote DEC VAX computer, change your terminal configuration
settings as described in the next subsection, “Terminal Settings to DEC VAX Computers.”

2-2 TELNET

Terminal Settings to DEC VAX Computers

If you are using TELNET on the HP 1000 to connect to a remote DEC VAX host, you should set
the communication protocol of the HP 1000 host terminal to XON/XOFF. The steps are as follows:

1.

On the HP 1000, enter WH to display information about your terminal. Locate your session
number.

Execute this command to set your terminal to XON/XOFF protocol:
CI> cn,$session,34b,1b

Use TELNET to log on to the remote DEC VAX host.

Once you are logged on to the DEC VAX host, execute this command:
$ set terminal/vt100. You can put this command in your LOGIN.COM file for
automatic execution whenever you log onto the DEC VAX system.

Set your terminal to ANSI term type. See your terminal documentation for instructions.

When you have completed your TELNET session on the DEC VAX host and returned to the
local HP 1000 host, reset your terminal to HP term type. See your terminal documentation
for instructions.

Restore the local host to ENQ/ACK protocol by executing: CI> cn, $Ssession,34b,2b

Chained TELNET Sessions

Chaining makes it possible to hop across the network to different hosts. See Figure 2-2.

TELNET TELNET
session #1 session #2
Local Remote Remote

Host > Host 1 > Host 2

Figure 2-2. Using TELNET to Reach a Distant Host

If you chain several TELNET sessions, you may want to select a unique escape character for each
host in the chain, using the ESCAPE command. Then you can escape to the node of your choice by
issuing the appropriate escape character. (See Figure 2-3.)

TELNET 2-3

host A

host B

host C

"
e ~

telnet to B —'f_l_l_\
i >

telnet to ¢ —p {)
i B

and change telnet

escape character on CTRL-] returns you
host B to CTRL-B to telnet on host A

4 |

CTRL-B returns you
to telnet on host B
|

Figure 2-3. Using Different TELNET Escape Character

If all nodes use the same escape character, you can only escape to your local node; you cannot
escape to an intermediate node. See the ESCAPE command description later in this section.

Note Do not define the escape character to be the same as the interrupt character
(default interrupt is Y). See the INTERRUPT command for details.

Also be aware that different systems have different illegal escape characters; be
sure to check the appropriate system’s TELNET documentation for its list of illegal
characters.

If you chain TELNET sessions, the QUIT or EXIT command will terminate all sessions, close all
connections, and return you to the local host. If, however, you log off the remote host, only the
most recent TELNET session is closed. Any other chained sessions are still active.

If TELNET terminates abnormally or is aborted, any remote session chained from your session is
automatically terminated. For example, if your session was the fourth out of five chained sessions,
and it aborted, only the fourth and fifth sessions would abort.

Block mode applications over chained TELNET sessions are not supported.

2-4 TELNET

Block Mode Considerations

The TELNET standard specifies a character mode protocol. In character mode, data is
transmitted a character at a time as it is entered through the keyboard. Control codes, such as
carriage return and linefeed, are also transmitted. Character mode is the normal operation of a
terminal.

With block mode, data is not transmitted one character at a time. Instead, an entire block of data
is typed in locally on the terminal. When the enter key is pressed, the data is transmitted from the
terminal to the computer.

Block mode for the HP 1000 is technically defined in the RTE-A Driver Reference Manual, part
number 92077-90011.

The following products support block mode applications to the HP 1000:

e ARPA/Vectra revision 2.0 (or later) with the Advlink B.02.00 Emulator. On ARPA/Vectra,
the RS (record separator) is the default escape character for TELNET. The RS character is
also a special character in block mode. The TELNET escape sequence on the PC must be
changed to another character.

e ARPA/9000 revision 7.0 (or later) with direct connect terminals only. HPTERM is not
supported.

e TS-8 with LSM 2.1 (or later) software.
e Data communications and Terminal Controller (DTC).

Block mode applications over TELNET are not supported on the PC Officeshare products.

Any TELNET user can communicate with a block mode application on the HP 1000 as long as the
local terminal or terminal emulator can handle block mode I/O.

Block mode applications over chained TELNET sessions are not supported.

For block mode applications, terminals directly connected to an HP 1000 require XON/XOFF in
both the transmit and receive directions. If the terminal is not set to XON/XOFF in both
directions, a slow TELNET session may be overrun by the terminal and data will be lost or the
application may hang.

For block mode applications, terminals attached to the TS-8 with LSM 2.1 (or greater) software
require XON/XOFF in only the receive direction. If XON/XOFF is set for the transmit direction,
block mode applications may hang.

Troubleshooting Hints

Here are some suggestions for isolating problems:

e Verify whether the terminal and/or terminal emulator supports block mode. Test your
application on a directly-connected terminal on the local system. Then test again on the
terminal emulator. Finally, test to a remote system over TELNET.

TELNET 2-5

e Check that the block mode application can run between two HP 1000 systems before
executing from a PC or HP 9000. You can also check your application using TELNET on the

same HP 1000 system.

e Determine which call fails in the block mode application. Refer to the RTE-A Driver
Reference Manual.

Using TELNET

TELNET is scheduled at the RTE Command Interpreter level (CI>). TELNET can be invoked
with or without the host parameter.

Syntax

TELNET [, host]

Parameters

host Specifies the remote node to which you want to log on. You may use the
host’s node name or IP address for the host parameter.

The syntax for the host’s node name is shown here, and is further described
under “Node Names” in Section 1 of this manual.

node[.domain[.organization]]

The syntax for the host’s IP address is shown here, and is further described
under “IP Addresses” in Section 1 of this manual.

nnn.nnmn.nnn.nnn

If host is not specified, TELNET displays a prompt (TELNET>) and waits
for you to enter a TELNET command. The commands are described under
“TELNET Commands” later in this section.

Discussion

When TELNET is invoked with the host parameter, TELNET automatically performs an OPEN
command to establish a connection with the specified remote host. If the remote connection is
successful, the logon prompt for the remote system is displayed, allowing you to log on. The OPEN
command is explained later in this section.

2-6 TELNET

If TELNET is invoked without the host parameter, TELNET enters command mode, indicated
by the TELNET prompt (TELNET>). In command mode, TELNET accepts and executes the
TELNET commands listed in Table 2-1, “TELNET Commands.” If you invoke TELNET without
the host parameter, you must enter the TELNET OPEN command to establish a remote
connection.

Only one connection for each user can be open at a time. HP does not support more than one open
connection per user.

Once a connection has been opened, TELNET enters input mode. In this mode, text that is typed
at your terminal is sent to the remote host. When you logout from the remote session, you will
return to the local host.

To temporarily return to the local node and to issue TELNET commands, type the TELNET
escape character. The default TELNET escape character is 1. You may change the

default escape character with the ESCAPE command, which is explained later in this section. To
return to the remote session before breaking the remote connection, type a carriage return at the
TELNET prompt.

To terminate TELNET, enter the EXIT or QUIT command at the TELNET prompt. The EXIT
and QUIT commands are explained later in this section.

TELNET 2-7

TELNET Operation

The following example shows how to use TELNET.

CI>TELNET TELNET invoked at the local
TELNET User Program Rev. 6100 ‘‘Enter ? for help. Command Interpreter prompt.

TELNET > TELNET prompt is displayed.
TELNET>open Karl OPEN establishes a connection to a
Opening to ... Karl remote system called Karl. Once the
* %k Welcome to TELNET * k% connection has been established, the
Please hit a <cr> to get the logon prompt. remote node displays a logon prompt.

(=),

RTE-A logon:

RTE-A logon: amy Log on to the remote system.

Password? Password is not echoed to the
terminal.

CI>RU,EDIT Run EDIT at the remote node.

CI> Finish editing.

CI>EX Terminate your remote RTE session

Finished with the RTE EX command. Note:

Connection closed. this is not the TELNET EXIT
command.

TELNET>EXIT EXIT terminates TELNET and

returns to the local operating system.

Note If TELNET is aborted or terminates abnormally at the local node after you log
on to the remote node, you will be aborted from your remote session.

If an error occurs while running TELNET, an error message will be displayed on your terminal.
Refer to “TELNET User Error Messages” in Section 4 of the NS-ARPA/1000 Error Message and
Recovery Manual for a description of the TELNET error messages.

2-8 TELNET

TELNET Commands

TELNET has 12 commands as listed in Table 2-1. These commands are explained in subsequent
pages of this section.

Table 2-1. TELNET Commands

Command Description

? Displays TELNET commands and help information. Same as HELR

CL [OSE] Closes the remote connection and logs off the remote session.

ES [CAPE] Defines the TELNET escape character.

EX[IT] Closes the remote connection, logs off the remote session, and
terminates TELNET. Same as QUIT

HE [LP] Displays TELNET commands and help information. Same as ».

IN [TERRUPT] Changes the TELNET remote interrupt character.

MO [DE] Changes the data transmission to either line or character mode.

OP [EN] Establishes a connection to a remote host.

QUI[IT] Closes the remote connection, logs off the remote session, and
terminates TELNET. Same as EXIT

RU [N] Runs a local program.

SE [ND] Sends special characters or commands to the remote node.

ST [ATUS] Displays status of the TELNET remote connection.

TELNET 2-9

Displays TELNET commands and help information. Same as the HELP command.

Syntax

? [command]

Parameters

command

Any TELNET command listed in Table 2-1, “TELNET Commands.”

If no command is specified, TELNET lists the TELNET commands, with a
one-line description for each command. (See the example below.)

When a command is specified, TELNET displays a brief description of the
command. (See the example for the HELP command later in this section.)

Example

The following example shows help information displayed by ?. The * character indicates the

key.

TELNET>?

EN] hostname

command

? command
77

ATUS]

DE] LI[INE]

DE] CI[HARACTER]
CAPE] escape char

T[

o}

o}

Sl

S[CAPE] “letter

N [TERRUPT] interrupt character
N [TERRUPT] “letter
E[ND] IN[TERRUPT]
E[

E[

E[

E[

Ul

ND] E[SCAPE]
ND] B [REAK]
ND] A[YT]
ND] IP

N] program

2-10 TELNET

establish a connection to hostname
close connection to remote host
terminate TELNET

terminate TELNET

print this help message

print description of command
print this help message

print description of command
equivalent to HELP ?

print state of TELNET connection
transmit data after line of input
transmit data after each character
define escape character

define escape character

define interrupt character

define interrupt character

send interrupt character as data
send escape character as data
send TELNET “Break”

send TELNET “Are You There”

send TELNET “Interrupt Process”
run a program

CLOSE

Closes the remote connection and logs off the remote session.

Syntax

CL [OSE]

Discussion

The CLOSE command closes the connection to the remote host and terminates any remote
session. You remain at the local node and in TELNET. The CLOSE command is similar to the
TELNET EXIT and QUIT commands. However, unlike EXIT and QUIT, CLOSE does not return
you to the local operating system unless you specified a host in the TELNET runstring.

The CLOSE command allows you to connect to other remote hosts during the same TELNET
session.

Example

The following example shows the use of CLOSE to break a remote connection.

TELNET>CLOSE Breaks the remote connection
Connection closed.

TELNET>STATUS STATUS shows that the remote connection is
No connection open. closed (no connection open). STATUS is
Escape character = 7] covered later in this section.

Interrupt character = Y
Transmission mode = Line

TELNET 2-11

ESCAPE

Defines the TELNET escape character.

Syntax

ES [CAPE] escape char

Parameters

escape char

Any seven-bit ASCII character except those listed below in Table 2-2. The
default is 1.

The escape character, when typed at the remote session, allows you to
temporarily return to the local node. To go back to the remote node, enter
a single carriage return at the TELNET prompt.

Table 2-2. lllegal TELNET Escape Characters

Decimal
Value ASCII Character Terminal Keys

0 NUL (null) @
4 EOT (end of transmission) D
8 BS (backspace) H
10 LF (linefeed) J
13 CR (carriage return) M
17 DC1 (XON) 0
18 DC2 R
19 DC3 (XOFF) s
24 CAN (cancel) X
25 EM (end of medium) Y
30 RS (record separator) A
31 US (unit separator) B
127 DEL (rubout) DEL

2-12 TELNET

ESCAPE

The characters in Table 2-2 cannot be defined as the remote escape
character, because they have special terminal functions. Using one of these
characters may cause communication problems with the remote node.

Do not define escape char to be the same as the TELNET interrupt
character. The TELNET interrupt character default is Y and
can be redefined by the INTERRUPT command.

Discussion

The TELNET ESCAPE command redefines the TELNET escape character. The new escape
character remains in effect for the duration of the current connection or until another TELNET
ESCAPE command is issued. If no escape char is specified, the default 1) will be
used. Defining a different escape character is especially useful for chained sessions, as described
in “Chained TELNET Sessions” ealier in this section.

When entered at the remote node, the TELNET escape character allows you to “escape” to your
local node. The TELNET prompt is then displayed, and you can enter other TELNET commands.
To return to the remote system, enter a single carriage return at the TELNET prompt.

Escape does not return you to the local operating system. To return to the local operating system,
terminate TELNET with EXIT or QUIT or use the RUN program command to get CI. The escape
character should only be used to temporarily return to the local node. To terminate a remote
session and return to TELNET, use the appropriate logoff command for the remote system; e.g.,
EX command for RTE.

Example

In the following example, the ESCAPE command redefines the escape character as A.
When used at the remote node, A returns the user to the local node.

TELNET>ESCAPE [CONTROLJ A ESCAPE defines |CONTROLJ A as the escape
Escape character = “A character.

TELNET>open Karl Connect to remote system called Karl.
CI>CONTROLN A TELNET> CONTROLJ A issued at the remote session

returns user to the local node.

TELNET prompt displayed at the local
node.

TELNET>| RETURN Single carriage return at the TELNET
prompt returns user to the remote session.

CI> CI prompt at the remote session.

TELNET 2-13

EXIT

Closes the remote connection, logs off the remote session, and terminates TELNET. Same as
QUIT.

Syntax

EX[IT]

The TELNET EXIT command closes the connection to the remote host, logs off the remote
session, terminates TELNET, and returns you to the operating system at the local node. The
EXIT command is identical to the QUIT command.

The CLOSE command also closes the remote connection, but you remain in TELNET unless you
specified host on the TELNET runstring, in which case you return to the local operating system.

2-14 TELNET

HELP

Displays TELNET commands and help information. Same as 2, described earlier.

Syntax

HE [LP] [command]

Parameters

command Any TELNET command as listed in Table 2-1, “TELNET Commands.”
When a command is specified, HELP displays a brief description of the
command. (See example below.)
If no command is specified, HELP lists the TELNET commands, their
syntax, and a one-line description for each command. (See the example for
the ? command, earlier in this section.)

Example

TELNET>HELP STATUS

ST [ATUS] - print state of TELNET connection

This command is used to display the current state of the TELNET
connection. Display items include:

the current connection state (OPEN or CLOSED)

the remote host name if a connection is open

the currently defined TELNET escape character

the currently defined TELNET interrupt character

the current transmission mode (LINE or CHARACTER)

a list of any TELNET network options which are currently
enabled

O O OO0 OO

TELNET>

TELNET 2-15

INTERRUPT

Changes the TELNET remote interrupt character.

Syntax

IN[TERRUPT] intr char

Parameters
intr char Any seven-bit ASCII character except those listed below in Table 2-3. The
default is Y.
The interrupt character is used to send a “BREAK?” indication to the
remote system without hitting the key on the terminal.
Table 2-3. lllegal TELNET Interrupt Characters
Decimal
Value ASCII Character Terminal Keys

0 NUL (null) @

4 EOT (end of transmission) D

8 BS (backspace) H

10 LF (linefeed) J

13 CR (carriage return) M

17 DC1 (XON) 0

18 DC2 R

19 DC3 (XOFF) s

24 CAN (cancel) X

27 ESC (escape)]

30 RS (record separator) A

31 US (unit separator) B

127 DEL (rubout) DEL

The characters in Table 2-3 cannot be defined as remote interrupt
characters, because they have special terminal functions. Using one of
these characters may cause communication problems with the remote node.

Do not define intr char to be the same as the TELNET escape
character. The TELNET escape character default is 1 and can
be redefined by the ESCAPE command.

2-16 TELNET

INTERRUPT

Discussion

The TELNET INTERRUPT command redefines the TELNET interrupt character. The interrupt
character is entered at the remote session to interrupt the current process on the remote node.

If no interrupt character is specified, the default (Y) will be used.
Using the interrupt character is equivalent to hitting the key at the remote host.

To interrupt the remote session from the TELNET prompt, use SEND IP which is explained later
in this section.

Example

CI>wh,al Run wh, al on a remote RTE node.

CONTROL| v Hit the interrupt character (CONTROLJ Y) to interrupt.
CM> The RTE cM> prompt is displayed.

CM>|CONTROL Hit carriage return to resume current process.

TELNET 2-17

MODE

Changes the data transmission to either by line or by character mode.

Syntax

L[INE]
MO [DE] § ¢ [HARACTER]

Parameters

L[INE] Sends data a line at a time from the local terminal to the remote node. In
RTE-A, each line of data ends with a carriage return.

C [HARACTER] Sends data a character at a time from the local terminal to the remote

node. Each character is sent without waiting for an end-of-line character.

Discussion

As you enter characters at your local terminal, the characters are sent to the remote node. The
characters are finally received by the application or Command Interpreter that you are running on
that remote node. Characters can be transmitted either by line or by one character at a time. In
line mode, you must enter a carriage return at the end of each line before the characters will be
sent. In character mode, data is transmitted character by character. If no transmission mode is
specified, the default line transmission mode will be negotiated.

Before a remote connection is established, the TELNET default data transmission mode is line
mode. Once a remote connection is established, the data transmission mode automatically
changes to character mode. When you change modes to line mode, the change takes a few
seconds. Use the STATUS command to check when the connection has actually changed to line
mode. The status will show “character mode,” until TELNET actually finishes negotiations and
switches to “line mode”. RTE-A systems usually transmit data a line at a time.

CHARACTER data transmission may be used for applications that echo the characters themselves.

Note Character mode is very inefficient; performance is considerably better in line
mode.

2-18 TELNET

OPEN

Establishes a connection to a remote host.

Syntax

OP [EN] host

Parameters

host Specifies the remote node to which you want to log on. You may use the
host’s node name or IP address for the host parameter.

The syntax of the node name is shown here, and is further described under
“Node Names” in Section 1 of this manual.

node[.domain[.organization]]

The syntax for the host’s IP address is shown here, and is further described
under “IP Addresses” in Section 1 of this manual.

nnmn.nnn.nnn.nnmn

If host is not specified, TELNET connects you to your local node.

Discussion

When TELNET is scheduled with the host parameter, TELNET automatically performs an
OPEN command to establish a connection with the specified remote host. If the remote connection
is successful, the logon prompt for the remote system is displayed, allowing you to log on. When
you exit the remote session with the logout command for that system (in RTE, the EX command),
TELNET automatically closes the remote connection, terminates TELNET, and returns to the
local operating system.

If TELNET is not scheduled with the host parameter, TELNET enters command mode and
displays the TELNET prompt (TELNET>). In command mode, TELNET accepts and executes the
commands listed in Table 2-1, “TELNET Commands.” In this case, you must enter the TELNET
OPEN command to establish the remote connection. When you close the remote session,
TELNET closes the remote connection, but you remain in TELNET, until a QUIT or EXIT
command is issued. (See the example under “TELNET Operation,” earlier in this section.)

Only one connection for each user can be open at a time. HP does not support more than one open
connection per user.

Once a connection has been opened, TELNET enters input mode. In this mode, text that is typed
at your terminal is sent to the remote host. To temporarily return to the local node and issue
TELNET commands, type the TELNET escape character. The default TELNET escape character
is 1. The ESCAPE command is explained earlier in this section.

If an error occurs while you are running TELNET, an error message will be displayed on your
terminal. Refer to “TELNET User Error Messages” in Section 4 of the NS-ARPA/1000 Error
Message and Recovery Manual for a description of the TELNET error messages.

TELNET 2-19

QUIT

Closes the remote connection, logs off the remote session and terminates TELNET. Same as
EXTT.

Syntax

QUIT

Discussion

The TELNET QUIT command closes the connection to the remote host, logs off the remote
session, terminates TELNET, and returns you to the operating system at the local node. The
QUIT command is identical to the EXIT command. The CLOSE command also closes the remote
connection, but you remain in TELNET, unless host was specified on the TELNET runstring, in
which case you return to the local operating system.

Note If you have chained TELNET sessions, the QUIT command terminates all
sessions, closes all connections, and returns you to the host. If you log off the
remote host, only the most recent TELNET session is closed. Any other
chained sessions are still active.

2-20 TELNET

RUN

Runs a program at the local node.

Syntax

RU[N] program

Parameters

program The name of a program on the local system.

Discussion

The TELNET RUN command is identical to the RTE Command Interpreter RU command. If the
specified program is scheduled successfully, TELNET will wait until it completes. Refer to the
RTE-A User’s Manual for more information on the RU command.

Note If you are using TELNET to communicate with systems other than the HP 1000,
do not run programs that may alter the terminal configuration you established
during your initial TELNET communication. Unpredictable results may occur.

TELNET 2-21

SEND

Sends special characters or commands to the remote node.

Syntax

SE [ND]

Parameters

E [SCAPE]

IN [TERRUPT]

A[YT]

2-22 TELNET

E [SCAPE]
IN [TERRUPT]

A[YT]
B [REAK]

IP

The SEND ESCAPE command sends the TELNET escape character as a
data character to the remote node. Normally, the TELNET escape
character is removed from any data sent to the remote node. The SEND
ESCAPE command is needed and helpful when you do need to send the
escape character as a data character.

If the application program running on the remote system requires you to
input the current escape character, you can do one of two things:

e change the escape character for the duration of the program with
the ESCAPE command

e press the escape character to return to the TELNET prompt
(TELNET>), then use SEND ESCAPE to send the escape character
as input to the remote application program. (See example below.)

The SEND INTERRUPT command sends the interrupt character as a data
character to the remote node. Normally, the interrupt character will
suspend, interrupt, abort, or terminate the remote process. The SEND
INTERRUPT command is needed and helpful when you do need to send the
interrupt character as a data character.

If the application program running on the remote system requires you to
input the current interrupt character, you can do one of two things:

e change the interrupt character for the duration of the program with
the INTERRUPT command

e press the escape character to return to the TELNET prompt
(TELNET>), then use SEND INTERRUPT to send the interrupt
character as input to the remote application program.

The SEND AYT command asks the remote node to return evidence that the
TELNET connection is still open. If the connection is still open, the
remote node returns an affirmative response (e.g., terminal beep, yes,
etc.). AYT stands for “Are you there?”

SEND

B [REAK] The SEND BREAK command invokes a break at the remote node. This
command is equivalent to pressing the key at the remote node.

Ip The SEND IP command sends an interrupt to the remote node.

This command is equivalent to pressing the interrupt character

Y) at the remote node.

Discussion

SEND performs two distinct functions:

e It allows you to send special character sequences as data to the remote node. See
SEND ESCAPE and SEND INTERRUPT.

e [t allows you to send special commands to the remote node. See SEND AYT, SEND BREAK,
and SEND IP.

At the system console, pressing the BREAK key invokes VCP mode on HP 1000 nodes.

Example

The following example shows the steps to enter the escape character as input to an application
program at the remote node.

Enter CNTRL-] to get last menu: Remote application program requires the
escape character 1) as input.

] 1 returns you to TELNET.

TELNET > TELNET prompt displayed.

TELNET>SEND ESCAPE SEND ESCAPE sends the escape character as

input to the remote application program.

TELNET > RETURN A single carriage return at the TELNET
prompt returns user to the remote session.

TELNET 2-23

STATUS

Displays the current state of the TELNET connection.

Syntax

ST [ATUS]

Discussion

The STATUS command displays information about the current TELNET connection. It shows the
state of the connection (open or closed), the name of the remote host if connection is open, the
currently defined escape character and interrupt character, and the data transmission mode (line
or character).

To find more information about your local sessions, type the RTE-A command ru, wh, al at the
TELNET prompt. For information about your remote sessions, enter the equivalent commands at
the remote node.

Example

The following example shows the use of the STATUS command. The * represents the
key.

TELNET>STATUS

Connected to Karl.
Escape character = 7]
Interrupt character = Y
Transmission mode = Line

2-24 TELNET

FTP

FTP is an ARPA Service that allows you to transfer files among HP 1000, HP 3000 XL, HP 9000,
UNIX*, and non-UNIX network hosts that support ARPA Services. FTP is the file transfer

program that uses the ARPA standard File Transfer Protocol (FTP).

FTP also allows you to perform file management operations, such as changing, listing, creating,

and deleting remote directories.

This section provides a task-oriented introduction to FTP, followed by a command reference
subsection that describes each FTP command in detail, organized in alphabetical order for easy

reference.

The FTP commands currently supported on the HP 1000 are listed below:

File Operation Commands:

APPEND
ASCIT
BELL
BINARY
DELETE
FORM
GET
HASH
MDELETE
MGET
MODE
MPUT
PUT
RECV
RENAME
RTEBIN
SEND
STRUCT
TYPE

Directory Operation Commands:

CD
DIR
DL
LCD
LS
MDIR
MKDIR
MLS
NLIST
PWD
RENAME
RMDIR

Invoke & Exit FTP Commands:

BYE
CLOSE
EXIT
OPEN
QUIT

Other Commands:

? or ?7?

/

DEBUG
GLOB
HELP

LL
PROMPT
REMOTEHELP
SITE
STATUS
SYSTEM
TR

USER
VERBOSE

*UNIX is a registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other countries.

FTP 3-1

Invoking FTP

FTP is scheduled at the RTE Command Interpreter level (CI>). FTP can be invoked with or
without the following parameters.

Syntax
FTP [-i] [-1[filenamel] [-n] [-tfilenamel]l [-v] [-g] [-g]
[-u[username:password]] [host]

Parameters

-i Disables interactive prompting during multiple-file operations.
Interactive prompting occurs during multiple file operations to let
you selectively proceed with each file. You may use the FTP
PROMPT command to toggle interactive prompting.
Default: Interactive prompting is enabled.

-1[filename] Logs FTP output to the file specified in £i1ename in addition to
the user’s terminal. If £ilename is omitted, then the file
FTP.LOG is used. If filename is specified, there must be no
space between -1 and the file name. If the file specified by
filename already exists, output is appended to the file.
You may also specify a log file with the FTP LL command. See the
LL command for more details.
Default: Output is displayed on the user’s terminal only.

-n Disables auto-login. If auto-login is disabled, you must use the
USER command to log in to a remote host. If auto-login is enabled,
FTP prompts for a user name once a connection is established to a
remote host. See the USER command for more details.
Default: Auto-login is enabled if FTP input is from the keyboard.
Auto-login is disabled if FTP input is from a transfer file.

-tfilename Accepts input from the transfer file specified by filename. There

must be no space between -t and the file name.

When you use a transfer file, FTP automatically tries to open the
default log file, FTP . LOG, if a log file is not already open.

You may also use the FTP TR command to specify a transfer file.
See the TR command for more details on FTP transfer files.

Default: FTP accepts command input from the user’s terminal.

32 FTP

-u[username:password]

host

Enables verbose output. Verbose output displays all responses from
any remote host to which you are connected. These responses
indicate whether FTP commands completed successfully. Verbose
output also displays file transfer statistics after the transfer
completes.

You may toggle verbose output with the FTP VERBOSE command.
See the VERBOSE command for details.

Default: Verbose output is enabled if FTP input is from the
keyboard. Verbose output is disabled if FTP input is from a transfer
file, unless you specify the -v option.

Disables file name globbing during multiple file operations.
Globbing expands the wild card characters before proceeding with
the multiple command. You may use the FTP GLOB command to
toggle file name globbing.

Default: File name globbing is enabled.

Enables quiet mode for transfer files. The normal informative
messages are not output to the terminal.

Default: Informative transfer file messages are output to the user’s
terminal.

Specifies the user and password to use. FTP will use the username
and password to automatically logon to the host system. If either
one needs lower case characters, the string must be surrounded by
back quotes (‘). An example is: -u'MyName:mypass " .

Interactive users will be automatically logged on with the first OPEN
call. Subsequent calls to OPEN will prompt for the user and
password. The default user will be the user specified on the
command line.

A call to OPEN in a transfer file will always automatically log the
user on using the username and the password specified in the
command line. The USER command can be used to change the
logon for a single OPEN call. Subsequent calls to OPEN will revert
back to using the command line login.

Specifies the host to which you want to log on. You may use the
host’s node name or IP address for the host parameter.

The syntax for the host’s node name is shown here, and is further
described under “Node Names” in Section 1 of this manual.

node[.domain[.organization]]

The syntax for the host’s IP address is shown here, and is further
described under “IP Addresses” in Section 1 of this manual.

FTP 33

nnn.nnn.nnn.nnmn

If host is not specified, FTP displays the FTP prompt and waits for
you to enter an FTP command. In this case, you must specify the
OPEN command to open a connection to a host. The OPEN
command is described later in the reference part of this section.

Discussion

FTP runstring parameters must be separated by one or more spaces or by a comma.
FTP runstring parameters may be specified in any order.
When FTP exits normally, the SRETURN parameters are set as follows:

SRETURN1 = 0 is successful. A non-zero value gives the total number of errors including
FTP server errors.

SRETURN2 = last FMP error encountered if any.

SRETURN3 = last FTP error encountered if any.

SRETURN4 = last IPC error encountered if any.

FTP can be invoked from a user program by calling FMPRunProgram. The FTP runstring should
include the -1 and -t options. The transfer file should be an OPEN command (if the nodename is
not in the runstring), a USER command, the file transfer commands, and a QUIT or BYE
command.

34 FTP

FTP Operation

The following example shows a sample FTP session from an HP 1000 to a UNIX remote host.

CI> ftp -1

Logging to file ... FTP.LOG
FTP/1000 User Program Rev. 6100
Enter ? or ?? for help.

ftp>

ftp> open sable
Connecting to ... sable

220 sable FTP server (Version $Revision:
Mon Apr 29 20:45:42 GMT 1991) ready.

(username: dwight) |RETURN

331 Password required for dwight.
(password: dwight)

230 User dwight logged in.

Remote system type is UNIX Type: LS8.
ftp>

ftp> PWD

257 “/test/dwight” is the current directory.

ftp> CD EXAMPLES
250 CWD command successful.

ftp> DIR

200 PORT command successful.

150 Opening ASCII mode data connection
(192.6.70.19,33123) (0 bytes)
total 30

-rw-rw-rw- 1 dwight arpalk 600 Feb

-rw-rw-rw- 1 dwight arpalk 965 Feb

-rw-rw-rw- 1 dwight arpalk 1691 Feb

-rw-rw-rw- 1 dwight arpalk 5008 Feb

-rw-rw-rw- 1 dwight arpalk 1350 Feb

-rw-r--r-- 1 dwight arpalk 3655 Feb

226 Transfer complete.

383 bytes transferred in 1.43 seconds
[0.26 kbytes/second]

16.

FTP invoked at the local Command
Interpreter prompt. The -1 option
opens the default FTP log file,
FTP.LOG. FTP messages are sent to
this file in addition to the terminal.

FTP prompt is displayed.

OPEN establishes a connection to a
remote system called sable. Once
the connection has been established,
you are prompted for the user and
password on the remote host.

Log on to the remote system. The

password is not echoed on the
terminal.

PWD shows the name of the remote
working directory.

CD connects to the remote EXAMPLES
directory.

DIR lists the files in EXAMPLES
directory.

for /bin/ls

I S

09

09

09

:59
10:
10:
:47
10:
:46

00
00

04

testl
test2
test3
test4
testh
track

FTP 3-5

ftp> GET TEST1 DATAl

200 PORT command successful.

150 Opening ASCII mode data connection for TEST1

(192.6.70.19,33124)
226 Transfer complete.
705 bytes transferred in 0.36 seconds
[1.95 kbytes/second]

ftp>

ftp> ?

FTP commands may be abbreviated. Commands are:

! dl
append exit
ascii form
bell get
binary glob
bye hash
cd help
close lcd
debug 11
delete 1s
dir mdelete
ftp>

ftp> ? GET

GET - transfers a remote

mdir
mget
mkdir
mls
mode
mput
nlist
open
prompt
put
pwd

Same as RECV.

ftp>

ftp> QUIT

221 Goodbye.

CI>

36 FTP

(600 bytes) .

quit system
quote tr
recv type
remotehelp user
rename verbose
rmdir ?
rtebin ?7?
send /

site

status

struct

file to a local file.

GET copies remote file TEST1 in the
EXAMPLES directory to file DATAL in
the current working directory on the
local host.

2 lists the currently supported FTP
commands on the HP 1000.

? GET displays information about the
GET command.

Quits FTP and returns to the CI
prompt. The connection to the
remote host is closed automatically.

Terminating FTP

You may terminate your FTP session with one of the following FTP commands:

BYE, EXIT, or QUIT to disconnect from the remote host and exit FTP.

CLOSE to disconnect from the remote host and remain in FTP. This allows you to
connect to other remote hosts during the same FTP session.

BYE, CLOSE, EXIT, and QUIT are discussed in detail in the command reference part later in this
section.

Temporarily Exiting FTP

You can temporarily exit FTP and return to the CI prompt on your HP 1000. This allows you to
work on the local host and then return to FTP. You can either:

e execute a single command on your local host and automatically return to FTP by typing a
single RTE program name after an exclamation point (!) at the FTP prompt:

ftp> ! programname

e work for an extended time on the local host. To do so, enter a single exclamation point (!) at
the FTP prompt. This exits you to the CI prompt. To return to FTP, type the CI EX command
at the CI prompt.

ftp> !

CI>

CI> EX

ftp>

FTP 3.7

Obtaining Help

You can obtain summary information about FTP commands with FTP’s HELP commands. You
can either list the FTP commands or get information about a specific FTP command.

To list the FTP commands available on the HP 1000, enter one of the following at the FTP
prompt:

?
?7?
HELP

To get information about a specific FTP command, type one of the following:

?
?? ftp command
HELP

where ftp command is an FTP command (or command abbreviation) listed in Table 3-2. You
need to use a space or comma between the command keyword and the FTP command. For
example:

HELP GET or HELP,GET.

RTE-A CI Files and Directories

A file name on the RTE-A CI system can have up to 16 alphanumeric characters. In addition, a
file can have a file extension, marked by a dot followed by an extension of up to four characters.
The first character of the file name must be a letter. Examples of valid RTE-A file names are
NOTES.DOC and TEST23. Capitalization of file names is optional, because the HP 1000 always
shifts the input to uppercase. On the HP 1000, the following three file names all refer to the same
file: TEST23, Test23, test23.

Note HP 9000 hosts and other UNIX hosts distinguish uppercase and lowercase in file
names. Hence, TEST23, Test23, and test23 refer to three different files on those
systems.

HP 1000 FTP does not upshift the file names for remote hosts, such as UNIX, that
distinguish uppercase and lowercase in file names.

The RTE-A (I file system has a hierarchical file structure. Files are catalogued in directories.
Directories can also contain similar information about other directories, called subdirectories.
Subdirectories have the same characteristics as directories; the term subdirectory means only that
the directory is catalogued in the next higher level directory or subdirectory. Each account or
logon on the HP 1000 has a default logon working directory. This directory is automatically made
available to you when you log on.

38 FTP

If the HP 1000 file resides in the hierarchical file system, the file name syntax is as follows:

[/] [directory/] [subdir/] ... filename[:::type:size:recordlength]

- Or -

[subdir/] filename:: [directoryl] [: type: size: recordlength]

Parameters

directory

subdir

filename

type

The directory containing the file. If the directory parameter is omitted, the
default logon working directory is used.

In the first form of the syntax, if the initial slash (/) is omitted and the
directory parameter is specified, the directory is assumed to be a
subdirectory of the working directory.

In the second form of the syntax, if directory is omitted, you must have three
colons (: : :) between the file name and the file type, if a file type is specified,
such as: FOOFILE: : :4

The directory contained under a directory. HP 1000 file system accepts many
levels of directories.

Specifies the RTE-A file name, including an optional file extension.
Specifies the file type. HP 1000 files can have the following file types:

-1 Symbolic link files. A symbolic link is a file that indirectly refers to
another file. The symbolic link file itself contains a file descriptor that
points to the new file.

0 An I/O device. Type 0 is used in accessing devices with file calls. There
is no disk file or directory entry for type O files, and they do not have the
other properties listed in this section.

1 Random access files. These do not have any structure information in
them. These files contain fixed record lengths (128 words). They can be
read and written very quickly.

2 Fixed-length record, random access files. The record length is defined
when the files are created. They are usually user-created, large data
files.

3 Type 3 and higher files are variable-length and higher record, sequential

files suitable for use as text files. There is no difference in the handling
of file types 3, 4, and 7. Type 3 is for general purpose files and can be
used for text. This is the default file type when files are created with the
CR command. Type 4 is recommended for text files. By convention,
type 5 is used for Compiler or Assembler relocatable output files, type 6
is for program files that are memory-images of executable programs, and
type 7 is for Compiler or Assembler absolute binary output files. Type 6
files are treated the same as type 1 files.

8 Type 8 and higher files are user-defined, with the following exceptions.

FTP 3-9

12 Byte stream files. These do not have any structure information in them.
The directory entry for each type 12 file contains a pointer to the last
byte in the file. The fields for number of records and record length are
not defined for type 12 files.

6004 CALLS catalog files.

size Specifies how many blocks of disk space the file needs. One block is 128 words
(256 bytes or characters).

recordlength Specifies the file’s record length, in words, for fixed record files, especially type
2 files.

Discussion

The maximum file path name, including the file name, is 63 characters.
FTP does not support sparse files (type 2 files with missing extents).

The file descriptor parameters—type, size, and recordlength—are optional. If specified,
they must be given in the order shown above. To omit a parameter that is in front of another
specified parameter, you must enter a colon as a placeholder for the omitted parameter, such as:
FOOFILE:::4::300. This file has type 4, and record length of 300 words; note that a colon
serves as placeholder for the omitted size parameter (between 4 and 300) in addition to the
colon preceding the record length parameter.

In a file transfer, if file descriptor parameters are specified for the source file, they are used for
the destination file, unless the destination file specifies different file descriptor parameters. Note
that it is recommended that the source and destination file use the same file descriptor
parameters.

When a Revision 6.0 or later FTP client discovers that an FTP server is another Revision 6.0 or
later HP 1000, the client transfers files to and from the server such that the original file
attributes—file type, file size, and record size—are retained. The user does not have to specify
anything except the file name. FTP automatically sets the transfer type to BINARY.

For HP 1000 server systems that are pre-6.0, or for other server systems such as HP-UX, an
additional command, RTEBIN, sets the transfer type to BINARY; for subsequent PUT or MPUT
commands from the Revision 6.0 FTP client, the file type, size, and record length are added to the
destination file descriptor.

For example, a PUT of file FOO results in a destination file name of:
FOO: ::type:size:recordlength

This enables such files to be transferred to an HP-UX system and transferred back without loss of
their attributes.

Example

Note that the first example below is a shorthand for the second example. They both transfer a
local type 6 file to the remote node. The source and destination files have the same file type and
file name.

3-10 FTP

ftp> PUT TEST:::6

ftp> PUT TEST:::6 TEST:::6

FMGR Cartridge Files
If the HP 1000 file resides on a FMGR cartridge, the file name syntax is as follows:

filename [:security code] [:crn] [:typel [:size]l [: record length]

where sc is the security code and crn is the cartridge reference number. The type, size, and
recordlength parameters are the same as described for a hierarchical file. (See the RTE-A CI
Files and Directories, Parameters subsection earlier in this section.)

For more information about RTE-A files and directories, refer to the RTE-A User’s Manual, part
number 92077-90002.

Transferring Files With FTP

FTP offers the following file transfer operations:

® GET or RECV—transfers a file from the remote to the local host.
e MGET—transfers multiple files from the remote to the local host.
e PUT or SEND—transfers a file from the local to the remote host.
e MPUT—transfers multiple files from the local to the remote host.

When you transfer files with FTP, you are copying these files from one place to another. Transfers
do not move or delete the original files.

If no part of the target file path is specified, the source path is used for the target. In this case, any
directory path you specify as part of the source file must also exist on the target host. Otherwise,
FTP will not transfer the file.

The example below transfers a remote file user/examples/test to file user/examples/test
on the local host. Note that in order for this GET command to work, you must have a directory path
of /user/examples on your local (target) host.

ftp> GET /user/examples/test

The example below transfers a remote file user/examples/test to file foo on the current
working directory of the local host.

ftp> GET /user/examples/test foo

If no directories are specified, FTP transfers the files between the default working directory of the
remote and local hosts.

ftp> PUT progl prog2

FTP 3-11

ASCII File Transfers

ASCII file transfer should be used for transferring files containing ASCII data (that is, file types 3
and 4). File types 1, 2, 5, and 6 usually contain binary data and will cause unpredictable results if
you use ASCII file transfer.

The default file attributes for an ASCII file are:
File Type = 4
Record Length = 256 words
FTP ASCII file transfers use the above default file attributes, unless you change them in the file

description. The maximum record length allowed for ASCII records is 2048 words (4096 bytes).
Records larger than 2048 words are truncated during file transfer.

You may use the ASCITI command to set file transfer to ASCII type. Refer to the ASCII
command, explained later in this section, for more details about transferring ASCII files.

Binary File Transfers

You can specify binary file transfers with the BINARY or RTEBIN commands. Files are
transferred in binary mode automatically when both systems are Revision 6.0 or later HP 1000s.

When using binary file transfers, if both systems are not Revision 6.0 or later HP 1000s, it is
strongly recommended that you specify the destination file type, size, and record length (where
record length applies to type 2 files only). If you do not specify these destination file attributes
and you are transferring to an HP 1000 system, then the destination default file type is 1, record
length 128 words.

For binary file transfers, if the destination file size specified is greater than the original (source)
file size, FTP fills the remaining portion to the end of the file with null characters.

Refer to the BINARY and RTEBIN commands for more information about transferring binary
files.

Example

The following shows file transfers in the case where one of the systems involved in the transfer is
not a Revision 6.0 (or later) HP 1000 system. The examples show the GET command used to
transfer files of type 1 through type 6, where file FOO1 is of type 1, FOO2 is of type 2, and so on.
In these examples, the target file will have the same file type and file name as the source file.

ftp> BINARY
ftp> GET FOO1
ftp> GET FO02:::2:100:56

ftp> ASCII

ftp> GET FOO3:::3

ftp> GET F0O04

ftp> BINARY

3-12 FTP

ftp> GET FOO5:::5

ftp> GET FOO6:::6

Note that for file transfers other than file types 1 and 4, the file type specification is required to
ensure that the target file has the same file type as the source file. File type 1 and type 4 are the
default file types for binary and ASCII transfers, respectively.

How FTP Treats Wild Card Characters

You can use wild card characters in the file path for the FTP listing commands (DIR, DL, LS,
NLIST, MDIR, and MLS) and for multiple file operation commands (MPUT, MGET, and MDELETE).
These wild card characters represent a set of characters or character strings and are a “shorthand”
way of specifying a set of directory or file names. Different file systems have their own set of wild
card characters, so the wild card characters that are valid depend on the file system that processes
the FTP command.

The following table is a quick reference to the meaning of the wild card characters supported on
the HP 1000 and UNIX file systems.

Table 3-1. FTP Wild Card Characters

Character Matches

@ Any string, including a null string. The file system
processing the FTP command must be an HP 1000 Cl file
system.

- Any single character. The file system processing the FTP
command must be an HP 1000 CI file system.

* Any string, including a null string. The file system
processing the FTP command must be a UNIX file system.

For more information about wild card characters, refer to the documentation on the specific file
systems that you will be using.

The dash (-) and at-sign (@) wild card characters can be used only in the file name. They have no
special meaning in the directory and subdirectory names.

Note Wild card characters are always expanded (that is, always take effect) for listing
commands: DIR, DL, LS, NLIST, MDIR, and MLS. The following example lists
all files in the /TEST directory with the extension FTN:

DIR /TEST/@.FTN

If file name globbing is enabled, wild card characters are expanded for the multiple
file operations commands: MDELETE, MGET, and MPUT. By default, file name
globbing is enabled. Globbing may be toggled on and off by the GLOB command or
disabled by the -g option when invoking FTP.

FTP 3-13

Wild card characters are not expanded for single file transfer commands: GET, PUT, SEND, and
RECW.

Refer to the GLOB command for more information about file name globbing.

Examples

The following MPUT command is used to transfer all files on the current working directory of the
local HP 1000 host to the working directory of the remote host. The MGET command is used to
transfer all files on the current working directory of a remote UNIX host to the local host.

ftp> MPUT @ (The local file system is an HP 1000)
ftp> MGET * (The remote file system is a UNIX system)
Note If you use a wild card character that is not recognized by the file system (such as

the asterisk character on an HP 1000), the file system treats the character “as
is.” For example, FTP will try to list a file called * with the following command
to a remote HP 1000 host: DIR =*.

$VISUAL Command Editing

For VC+ systems, FTP supports the $VISUAL command editing modes (for example, EMACS or
VI) through use of the CMNDO monitor. To use this feature, make sure your home directory is
set, using the PATH program to set UDSP #0, and create file FTP.STK in that directory as a type 3
or 4 file.

To use CMNDO, set the SCMNDO_FTP or SCMNDO environment variable by entering one of
the following commands from CI (and restart FTP):

CI> set -x CMNDO FTP = T Use CMNDO from FTP, but not other utilities.
or

CI> set -x CMNDO = T Use CMNDO from all utilities that support it.
If you have SCMNDO set to TRUE but do not wish to use CMNDO from FTP enter:
CI> set -x CMNDO _FTP = F

Refer to the “Command Editing” chapter in the RTE-A User’s Manual, part number 92077-90002,
for more information on the $VISUAL command editing modes and the CMNDO monitor.

3-14 FTP

FTP Commands

ARPA/1000 supports the FTP commands listed in Table 3-2. These commands are documented in
detail on the following pages of this section.

FTP accepts the unique abbreviation for the FTP command keyword, as shown in Table 3-2.

FTP command parameters must be separated by one or more spaces or by a comma.

If you specify more than the number of parameters allowed for a command, FTP displays the
proper syntax for the command on your screen, followed by the FTP prompt. You may then
reenter the command.

If you omit a required parameter, FTP prompts you for the parameter.

Table 3-2. FTP Commands

Command Description

! Invokes Cl on the local host.

?[?] Displays FTP commands and help information. Same as HELP

.. Sets the working directory on the remote host to the parent directory.

/ Displays the FTP command stack.

AP [PEND] Transfers local filetothe end of remote file.

AS[CIT] Sets the FTP file transfer type to ASCII. This is the default type.

BE [LL] Sounds a bell after each file transfer completes.

BI [NARY] Sets the FTP file transfer type to BINARY.

BY [E] Closes the remote connection and exits from FTP. Same as EXIT and QUIT

CD Sets the working directory on the remote host to the specified
remote directory.

CL [OSE] Closes the remote connection and remains in FTP.

DEB [UG] Prints the commands that are sent to the remote host.

DEL [ETE] Deletes the specified remote file or empty remote directory.

DI [R] Writes an extended directory listing of a remote directory or file to the terminal or
toa local file.

DL Writes an extended directory listing in RTE-A DL format to the terminal or to a
local file.

E [XIT] Closes the remote connection and exits from FTP. Same as BYE and QUIT.

F [ORM] Sets the FTP file transfer form to the specified format. The only supported format
IS non-print.

G[ET] Transfers remote fileto local file. Same as RECV.

GL [OB] Toggles file name globbing.

HA [SH] Toggles hash-sign (#) printing for each data block transferred. The size of a data
block is 1024 bytes.

HE [LP] Displays FTP commands and help information. Same as » and ?>.

LC [D] Sets or displays the local working directory.

FTP 3-15

Command

Description

LL Specifies a log file to which FTP sends the commands and miscellaneous
messages ordinarily displayed to the user’s terminal.

LS Writes an extended directory listing of a remote directory or file to the terminal or
toa local file.

MDE [LETE] Deletes multiple remote files.

MDI [R] Writes an extended directory listing of remote directories or files to a
local file.

MG [ET] Transfers multiple remote files to the local system, using the same file
names.

MK [DIR] Creates a remote directory.

ML [S] Writes an abbreviated directory listing of remote directories or files to a
local file.

MO [DE] Sets the FTP file transfer mode to the specified mode. The only supported mode
is stream.

MP [UT] Transfers multiple Iocal files to the remote system, using the same file
names.

N [LIST] Writes an abbreviated directory listing of a remote directory or file to the terminal
ortoa local file.

O [PEN] Establishes a connection to the remote host.

PR [OMPT] Toggles interactive prompting.

PU[T] Transfers local fileto remote file. Same as SEND.

PW [D] Writes the name of the remote working directory to the terminal.

QUI [T] Closes the remote connections and exits FTP. Same as BYE and EXIT.

QUO [TE] Sends arbitrary FTP server commands to the remote host.

REC [V] Transfers remote fileto local file. Same as GET.

REM [OTEHELP] Requests help information from the remote host.

REN [AME] Renames a remote file or remote directory.

RM[DIR] Deletes an empty remote directory.

RT [EBIN] Sets the FTP file transfer type to BINARY. PUT will create destination file names
with the full RTE file descriptor.

SE [ND] Transfers local fileto remote file. Same as PUT.

SI[TE] Performs server-specific services.

STA [TUS] Writes the current status of FTP to the terminal.

STR [UCT] Sets the FTP file transfer structure to the specified structure. The only supported
structure is file.

SY [STEM] Shows the remote system type.

TR Specifies an input file from which to get FTP commands.

TY [PE] Sets the FTP file transfer type to the specified type. ASCII and BINARY are the
types currently supported.

U [SER] Logs into the remote host on the current connection, which must already be
open.

V [ERBOSE] Toggles verbose output. When verbose output is enabled, FTP displays

responses from the remote host.

3-16 FTP

Invokes CI or runs the specified program on the local HP 1000 host.

Syntax

! [prog name]

Parameters

prog name Any program that you can execute singly. Once the command is executed,
you automatically return to FTP. A space or comma must separate the
exclamation mark and the program name.
If no command is specified after the exclamation mark, you will remain in
CI until you execute the CI EX command. This allows you to run multiple
CI commands before returning to FTP.

Example

The exclamation point after the FTP prompt exits you to the CI prompt. To return to FTP, use the
CI EX command.

ftp>!
CI> wh,al

CI> EX

ftp>

FTP 3-17

Displays FTP commands and help information. You may use a single question mark (?) or double
question marks (??). Same as HELP command.

Syntax
?[?] [command]

Parameters

command Any FTP command listed in Table 3-2, “FTP Commands.”
If no command is specified, FTP lists the currently supported FTP
commands.
When a command is specified, FTP displays a brief description of the
command. A space or comma must separate the question mark and the
command parameter.

Example

The following example shows help information displayed by ?, without and with a specified
command.

ftp>?

FTP commands may be abbreviated. Commands are:

! dl mdir quit system
append exit mget quote tr
ascii form mkdir recv type
bell get mls remotehelp user
binary glob mode rename verbose
bye hash mput rmdir ?

cd help nlist rtebin ??
close lcd open send /
debug 11 prompt site

delete 1s put status

dir mdelete pwd struct

ftp> ? GET

GET - transfers a remote file to a local file. Same as RECV.

ftp>

3-18 FTP

Sets the working directory on the remote host to the parent directory.

Syntax

Discussion

The double period (. .) command is a shorthand for the CD .. command. See the CD command
for details.

Example

If you are currently in /USER/EXAMPLES directory, a double period (. .) command places you in
the /USER directory.

FTP 3-19

Displays the FTP command stack. Used for time saving purpose of not having to retype an FTP
command. Similar to the command stack display function (/) in RTE-A.

Syntax
linecount
VA VA
.text
Parameters
linecount Optional command line count integer, from 1 to 12, that specifies the
number of command lines from the last command entered to be displayed.
/... Optional extra slashes, up to 12 slashes, that you may specify. If two extra
slashes are specified, the last two commands executed are displayed. If
three extra slashes are specified, the last three commands are displayed,
and so on.
. text String of text that FTP uses to search the command stack. The text must be

preceded by a period (.). FTP displays commands in the stack that contain
the specified string of text.

Discussion

You may execute a command in the command stack by first displaying it with the / command,
then move the cursor to the desired command, edit it if necessary, and press carriage return.

A single slash (/), without any parameters, displays the last twelve command lines. If there are
less than 12 command lines in the stack, then only the existing command lines in the stack are
displayed.

The extra slashes and the I1inecount parameter are mutually exclusive.

If you have set environment variables to enable $VISUAL command editing, then the full features
of the command stack editor apply. See the preceding section on $VISUAL command editing.

The following examples show what is displayed by different / commands:

Command Syntax Number of Lines Displayed
/ Last 12 command lines displayed.
/8 Last 8 command lines displayed.
/// Last 2 command lines displayed.

3-20 FTP

Example

The first / command displays the last 3 commands of the command stack. The second /
command displays commands that contain the string “11”.

ftp> /3

pwd

cd /DWIGHT/EXAMPLES
dir

ftp> /.11

11 1

11 ftp.log

ftp>

FTP 3-21

APPEND

Transfers a local file to the end of a remote file.

Syntax

AP[PEND] local file [remote file]

Parameters
local file Specifies a valid file on the local host to be appended to the remote file.
remote file Specifies a valid file path on the remote host to append the local file.

If the remote file does not exist, FTP creates it before appending the
local file.

If the remote file parameter is omitted, FTP uses the local file
name as the remote file name.

Discussion

For more information about the HP 1000 file name syntax, refer to “RTE-A Files and Directories”
earlier in this section.

APPEND is not supported for binary file transfers. APPEND is also not supported for ASCII file
transfers involving file types 1, 2, and 6.

Example

The following example appends file TEST1, from the local working directory, to the file
FULLTEST in directory /USER/TEST on the remote host.

ftp> APPEND TEST1 /USER/TEST/FULLTEST

ftp>

3-22 FTP

ASCII

Sets the file transfer type to ASCII.

Syntax

AS[CIT]

Discussion

The file transfer types supported for FTP are: ASCII and binary.

ASCII type should be used for transferring ASCII files. ASCII type should also be used for
transferring files between unlike host systems (for example, between an HP 1000 and a UNIX
host).

Binary transfer should be used for transferring files between similar operating systems and
transferring files for archiving. See the BINARY command for more details.

When ASCII file transfer type is specified, the following occurs:
e Transferring to an HP 1000:

The <CR> and <LF> characters at the end of each record are removed as the record is
written to disk.

e Transferring from an HP 1000:

The <CR> and <LF> characters are appended to each record before it is sent over the data
connection.

When you use ASCII file transfer, make sure your file does not contain either the <LF>
character or the <CR> character as part of the data; otherwise, the file may be corrupted after
the transfer.
The default attributes used in ASCII type are:

File Type = 4

Record Length = 256 words

FTP ASCII file transfer uses the above default file attributes, unless you change them in the file
description. The maximum record length allowed for ASCII transfer is 2048 words (4096 bytes).

The default attributes may be changed by specifying file descriptor parameters as part of the file
name, such as: /EXAMPLE/TESTFILE:::3:150

The syntax for HP 1000 file names and parameters is shown earlier in this section, under “RTE-A
Files and Directories.”

FTP 3-23

BELL

Specifies that a bell sound is generated after each file transfer completes. This command toggles.

Syntax

BE [LL]

Discussion

By default, the BELL sound is disabled.

324 FTP

BINARY

Sets the FTP file transfer type to BINARY.

Syntax

BI [NARY]

Discussion
The supported FTP file transfer types are: ASCII and binary. See the ASCII command for
details.

Once the file transfer type is specified as binary, it remains in effect until you close the remote
connection or until you specify ASCII by using the ASCII command or TYPE ASCII command.

ASCII transfer type should be used for transferring ASCII files and for transferring files between
unlike host systems (for example, between an HP 1000 and a UNIX host).

Binary transfer type should be used in two kinds of file transfers:

e Transferring files between similar operating systems.

e Transferring files for archiving (for storage and not access). The files would not be in a
meaningful format if accessed on the destination host after the transfer. You would need to

transfer the files back to the same type of operating system from which they originated to
access them in a meaningful form.

For binary file transfers, if the destination file size specified is greater than the original (source)
file size, FTP fills the remaining portion to the end of file with null characters.

The default attributes used in binary transfer type to/from a pre-6.0 system are:
File Type = 1
Record Length = 128 words

The default attributes may be changed by specifying file descriptor parameters as part of the file
name, such as:
/EXAMPLE/TESTFILE:::3:150

The syntax for HP 1000 file name and parameters is shown earlier in this section, under “RTE-A
Files and Directories.” For more information on transferring binary files with FTP, refer to
“Binary File Transfers” earlier in this section.

FTP 3-25

BINARY

Note When using binary file transfer, you must specify the target file type to be the
same as the source file type. This can be accomplished by specifying the file
type in the source or target file name (see the second and third examples
below). If you do not specify the target file type to be the same as the source
file, the target file defaults to type 1, and the result is unpredictable if source
and target file types do not match.

Transfers to/from Revision 6.0 or later systems do not need the file types specified.
FTP automatically transfers the source file type.

Examples

The following command transfers a type 1 file. The target file will have the same file name as the
source file in this example.

ftp> PUT LOCALFILE

The following command transfers a type 2 file, SOURCE, to a type 2 file on the remote host,
TARGET. Note the type 2 specification for the target file.

ftp> PUT SOURCE TARGET:::2::200

The following command transfers a file, TEST, to the remote host with the same file name and file
type. FTP uses the file specification of the source file for the destination file.

ftp> PUT TEST:::6

3-26 FTP

BYE

Closes the remote connection and exits from FTP. Same as EXIT and QUIT.

Syntax

BY [E]

Discussion

The FTP BYE command closes the connection to the remote host, logs off the remote session,
terminates FTP, and returns you to the operating system of the local node. The BYE command is
identical to the EXIT and QUIT commands.

If you want to close the remote connection but remain in FTP, use the CLOSE command. See the
CLOSE command for more information.

FTP 3-27

CD

Sets the working directory on the remote host to the specified directory.

Syntax

CD remote directory

Parameters

remote directory Specifies a valid directory on the remote host to be the working directory.

By default, the working directory is the default login directory. To change
to another directory on the remote host, you should use the CD command.

Discussion

To change to the parent directory, you may use double periods (. .) or the CD .. command.

To determine the current working directory on the remote host, use the PWD command, described
later in this section.

The LCD command is the equivalent command for the local host. LCD sets a specified directory as
the working directory on the local host.

For more information about the HP 1000 file name syntax, refer to “RTE-A Files and Directories”
earlier in this section.

3-28 FTP

CLOSE

Closes the remote connection and remains in FTP.

Syntax

CL [OSE]

Discussion

The CLOSE command closes the remote connection and logs off the remote host, but does not exit
from FTP. This allows you to log on to another remote host and transfer files all within the same
FTP session.

CLOSE resets the file transfer type to the default mode, ASCII.

To close the remote connection and exit from FTP, use the BYE, EXIT, or QUIT command.

FTP 3-29

DEBUG

Prints the commands that are sent to the remote host. Used for debugging the current FTP
session. This command toggles debug mode.

Syntax

DEB [UG]

Discussion

When debug mode is enabled, FTP displays the FTP server commands that are sent to the remote
host along with any parameters that are needed to execute the FTP commands. This enables the
user to verify which command is being sent to the server.

By default, the debug mode is disabled.

Example
The following session shows an LS command executed with debug mode on and then off.

ftp> DEBUG
Debugging on.

ftp> LS

———> PORT 192,6,70,19,128,57

200 PORT command successful.

—-——> NLST

150 Opening data connection for /bin/ls (192.6.70.19,32825) (0 bytes).
testl

test2

test3

test4

testh

tracker form

226 Transfer complete.

49 bytes transferred in 0.55 seconds [0.8 kbytes/second]

ftp> DEBUG
Debugging off.

ftp> LS

200 PORT command successful.

150 Opening data connection for /bin/ls (192.6.70.19,32825) (0 bytes)
testl

test2

test3

test4

test5

tracker_ form

226 Transfer complete.

49 bytes transferred in 0.22 seconds [0.22 kbytes/second]

ftp>

3-30 FTP

DELETE

Deletes the specified remote file or remote directory.

Syntax

DEL [ETE] remote file

Parameters

remote file Specifies a valid file path on the remote host to be deleted. This can be a
file or an empty directory.
For more information about the HP 1000 file name syntax, refer to “RTE-A
Files and Directories” earlier in this section.
If the specified file does not exist or is not an empty directory, FTP displays
a warning and ignores the command.

Discussion

Refer to MDELETE, later in this section, for deleting multiple remote files.

FTP 3-31

DIR

Writes an extended directory listing of a remote directory or file to the terminal or to an output
file.

Syntax

DI[R] [remote listing] [local file]

Parameters

remote listing Specifies the remote directory or file mask from which a directory listing is
to be generated. If this parameter is not specified, a directory listing of the
remote working directory is generated.

local file Specifies the output file on the local host to store the directory listing. If
this parameter is not specified, the directory listing is written to your
terminal.

Discussion

The DIR command requests an extended directory listing from the remote server. DIR, without
any parameters, lists the current remote working directory to your terminal.

To omit the remote 1isting parameter but specify the local file parameter, use a comma
as a placeholder for the first parameter, such as

DIR,, Iocal file
This command lists the current remote working directory to the specified local file.

The following table shows the FTP commands available for listing remote directories and files.
See the individual commands for listing a single directory or file (DIR, DL, LS, NLIST) for
samples of listing formats.

FTP Remote Listing Commands

Listing a Single Directory or File Listing Multiple Directories or Files

DIR—extended listing MDIR—extended listing
DL—extended RTE listing
Ls—extended listing MLS—abbreviated listing
NLIST—abbreviated listing

For more information about the HP 1000 file name syntax, refer to “RTE-A Files and Directories”
earlier in this section.

3-32 FTP

Example

DIR

The following is an example of output returned from an FTP 1000 server:

ftp> DIR

200 PORT command successful.

150 Opening data connection for /bin/ls -1

total 30

—rW-TW-Tw-—
—rW—TW-Tw—
—rW—TW-Tw—
—rW—-TW-TW—
—rW-TW-TW—
—rw-r—--r—-—

226 Transfer complete.

I =

1

dwight
dwight
dwight
dwight
dwight
dwight

nsl000
nsl000
nsl000
nsl000
nsl000
nsl000

600
965
1691
5008
1350
3655

383 bytes transferred in 1.43 seconds

ftp>

Feb
Feb
Feb
Feb
Feb
Feb

PR R R PR

09

09

:59
10:
10:
09:
10:
:46

00
00
47
04

(192.6.70.19,33123) (0 bytes).

testl
test2
test3
test4
tests
tracker_ form

[0.26 kbytes/second]

FTP 3-33

DL

Writes an extended RTE-A directory listing of a remote directory or file to the terminal or to an
output file.

Syntax

DL [remote listing] [local file]

Parameters

remote listing Specifies the remote directory or file mask from which a directory listing is
to be generated. If this parameter is not specified, a directory listing of the
remote working directory is generated.

local file Specifies the output file on the local host to store the directory listing. If
this parameter is not specified, the directory listing is written to your
terminal.

Discussion

DL, without any parameters, lists the current remote working directory to your terminal in RTE-A
DL format. The DL command requests an RTE-A format directory listing from a Revision 6.0 (or
later) FTP 1000 server. The command only works when a Revision 6.0 (or later) FTP client
communicates with a Revision 6.0 (or later) FTP server.

To omit the remote 1isting parameter but specify the local file parameter, use a comma
as a placeholder for the first parameter, such as:

DL, , Iocal file
This command lists the current remote working directory to the specified local file.

The following table shows the FTP commands available for listing remote directories and files.
See the individual commands for listing a single directory or file (DIR, DL, LS, NLIST) for
samples of listing formats.

FTP Remote Listing Commands

Listing a Single Directory or File Listing Multiple Directories or Files
DIR—extended listing MDIR—extended listing

DL—extended RTE listing
Ls—extended listing MLS—abbreviated listing

NLIST—abbreviated listing

For more information about the HP 1000 file name syntax, refer to “RTE-A Files and Directories”
earlier in this section.

334 FTP

Example

ftp> DL

200 Type set to A.

200 PORT command successful.

150 Opening data connection for file
directory /WARRENO/TRACES

name

FAIL1.FMT
FAIL1.TRC
FAIL2.TRC
FATIL3K.TRC
FMTRC.RUN
HEX1.FMT
HEXFORMAT . FMT
HEXTR.CMD
HEXTR1.FMT
IPFRAG.TRC
LAVERNE.FMT
LAVERNE.TRC
NICE10.FMT
NICE1ll.FMT
NSTRACE . FMT
NSTRGOLD.TRC
NS TRACE.TRC
OCTALTR1.FMT
OCTFORMAT . FMT
TEST.FMT
XHEX.FMT

226 Closing data connection.

ex

prot

rw/r
rw/rw
rw/rw
rw/r
rw/r
rw/r
rw/r
rw/r
rw/r
rw/r
rw/r
rw/r
rw/r
rw/r
rw/r
rw/r
rw/rw
rw/r
rw/r
rw/r
rw/r

type

Wk WWNDNDWWWNWNhDWEWWODNDDNDDNDW

blks

1589
256
2048
1024
728
635
567
2
567
1024
2304
256
571
568
318
256
1024
567
567
768
567

list.

words

203322
32768
262144
131072
93184
81186
72450
240
72450
131072
215502
32768
73038
72702
40698
32768
131072
72450
72450
90132
72450

1312 bytes transferred in 0.44 seconds

200 Type set to I.
221 Service closing control connection.

ftp>
ftp>

recs

4841
32
256
128
728
1933
1725
42
1725
128
5131
32
1739
1731
969
32
128
1725
1725
2146
1725

2.

addr/1lu

993264/16
18560/16
856400/16
344832/16
387056/16
1002432/16
994864/16
2816/16
985904/16
858448/16
8384/16
18816/16
1053952/16
977184/16
358816/16
3072/16
852320/16
986480/16
995440/16
57152/16
996016/16

98 kbytes/second 1

DL

FTP 3-35

EXIT

Closes the remote connection and exits from FTP. Same as BYE and QUIT.

Syntax

E [XIT]

Discussion

The FTP EXIT command closes the connection to the remote host, logs off the remote session,
terminates FTP, and returns you to the operating system of the local node. The EXIT command is
identical to the BYE and QUIT commands.

If you want to close the remote connection but remain in FTP, use the CLOSE command. See the
CLOSE command for more information.

3-36 FTP

FORM

Sets the FTP file transfer form to the specified format. The only supported format is
non-print.

Syntax
F[ORM] format
Parameters
format Specifies the file transfer format. Currently the only supported format is

non-print.

Non-print format specifies that no vertical format information is contained.
Normally, this format is useful for files destined for processing or just
storage. If the file is passed to a printer process, the process may assume
standard values for spacing and margins.

Table 3-3 lists the FTP commands used to define file transfer form, mode, structure, and type.

Table 3-3. FTP File Transfer Form, Mode, Structure, and Type

Command Supported Meaning
Parameters

FORM non-print non-print specifies that no vertical format
information is contained in the file.

MODE stream Data is transmitted as a stream of bytes.

STRUCT file File is considered to be a continuous
sequence of data bytes.

TYPE* A[SCITI] Data is converted to the standard 8-bit
ASCII representation for transfer. Also see
the ASCII command.

B [INARY] Data is sent as it appears on disk. Also see
the BINARY command.

* ASCII file transfer type is the default when both systems are not Revision 6.0 (or later)
HP 1000s. To specify ASCII or binary, you may also use the ASCIT or BINARY command,

respectively.

FTP 3-37

GET

Transfers a remote file to a local file. Same as RECV.

Syntax

GE[T] remote file [local file]

Parameters
remote file Specifies a valid file path on the remote host to be copied to the local host.
local file Specifies the file on the local host to copy into. If this parameter is not

specified, FTP uses the remote file path as the local file path.

If a local file name is specified without a directory, the current working
directory on the local host is used.

Caution If a local file with the same file name already exists before the file
transfer, it is overwritten without warning.

Discussion

Refer to MGET, later in this section, for transferring multiple remote files.

For more information about the HP 1000 file name syntax, refer to “RTE-A Files and Directories”
earlier in this section.

Example

The first GET command transfers /user/example/filel to /user/example/filel on the
local host. If a directory path /user/example/ does not exist on the local host, FTP will
generate an error and will not execute the GET command.

The second GET command transfers file foofile in the remote working directory to foofile in
the local working directory.

ftp> get /user/example/filel

ftp> get foofile

3-38 FTP

GLOB

Toggles file name globbing (expansion) for multiple file operations.

Syntax

GL [OB]

Discussion

When file name globbing is enabled, FTP expands wild card characters in multiple file and
directory operations. In other words, FTP uses the wild card characters as wild cards and not as
the characters they normally represent. The wild card characters used depend on the type of the
remote host. See the subsection “How FTP Treats Wild Card Characters” earlier in this section
for more information about the use of wild card characters.

If globbing is enabled, wild card characters are expanded for the multiple file operations, such as
MDELETE, MGET, and MPUT.

File name globbing may be disabled in one of two ways:

e With the GLOB command described here.

e With the -g option when invoking FTP. Refer to “Invoking FTP” earlier in this section for
more information about this option.

When file name globbing is disabled, the wild card characters are treated “as is” and not as wild
cards. So, without globbing, the following command transfers just one file called @. TXT:

ftp> MPUT @.TXT

Note The wild card characters are always expanded for the listing commands: DIR,
DL, LS, NLIST, MDIR, and MLS.

Example

The following example shows transferring multiple files with globbing on and then off. (In both
cases shown here, interactive prompting is enabled.)

ftp> mput @.pas @.ftn

mput ftp.pas (Yes, No, Break, Stop Asking) [Yes]? Y
mput ftpsv.pas (Yes, No, Break, Stop Asking) [Yes]? Y
mput test.pas (Yes, No, Break, Stop Asking) [Yes]? N

mput test.ftn (Yes, No, Break, Stop Asking) [Yes]? N

FTP 3-39

GLOB

mput test2.ftn (Yes, No, Break, Stop Asking) [Yes]? Y

ftp> glob
Globbing off.

ftp> mput @.pas @.ftn

mput @.pas (Yes, No, Break, Stop Asking) [Yes]?

(=

mput @.ftn (Yes, No, Break, Stop Asking) [Yes]? N

ftp>

3-40 FTP

HASH

Specifies the printing of a hash sign (#) for each data block transferred. The size of the data block
is 1024 bytes. This command toggles the printing of hash signs.

Syntax

HA [SH]

Discussion

By default, hash sign printing is disabled.

FTP 3-41

HELP

Displays FTP commands and help information. Same as ? or ??.

Syntax

HE [LP] [command]

Parameters

command Any FTP command listed in Table 3-2, “FTP Commands.”
When a command is specified, FTP displays a brief description of the
command.
If no command is specified, FTP lists the currently supported FTP
commands.

Example

The following example shows help information displayed by HELP, without and with a specified

command.

ftp>HELP

FTP commands may be abbreviated. Commands are:

! dl mdir
append exit mget
ascii form mkdir
bell get mls
binary glob mode
bye hash mput
cd help nlist
close lecd open
debug 11 prompt
delete 1s put
dir mdelete pwd

ftp> HELP GET
GET - transfers a remote file

ftp>

342 FTP

quit
guote
recv
remotehelp
rename
rmdir
rtebin
send
site
status
struct

to a local

system
tr

type
user
verbose
?

??

/

file. Same as RECV.

LCD

Sets the local working directory to the specified directory.

Syntax

LC[D] [local directory]

Parameters

local directory Specifies a valid directory on the HP 1000 host to be the local working
directory.

If local directory is not specified, FTP returns the user to their home
directory.

Refer to “RTE-A Files and Directories” earlier in this section for more
information about directories on the HP 1000.

Discussion

If local directory is not specified, FTP returns the user to their home directory, which is
defined by setting UDSP#0. If this is not set, LCD prints out the current local working directory.

The CD command is the equivalent command for the remote host. CD sets a specified directory as
the working directory on the remote host.

FTP 3-43

LL

Specifies a local log file to which FTP sends commands and messages in addition to displaying
them on the user’s terminal.

Syntax

LL [Iocal file]

Parameters

local file Specifies a valid file name on the HP 1000 host as a log file.

All terminal output generated by FTP is logged into this file in addition to
your terminal. This allows you to check the log file later for errors and
information regarding the transfer.

If Iocal file is not specified, FTP prompts you for the log file name.
If the file already exists, output is appended to it.

To close the log file, use LL, 1.

Discussion

You may specify an FTP log file in one of two ways:

e With the LL command as described here.
e With the -1 option when you invoke FTP. See “Invoking FTP” earlier in this section.

If an FTP log file is already open when you attempt to open another log file, you will get an error
on the second log file, and FTP will continue sending log messages to the first log file.

If an error occurs while FTP tries to open a log file (for example, the file is already open), FTP
automatically tries to open up the default log file, FTP. LOG, so that there is no information lost.

Note FTP treats as a comment line any line that has an asterisk (*) as the first
character. You may want to use this feature to send comments to a log file. See
the example below.

Example

ftp> LL TEST.LOG

ftp> * This line is treated and sent to the log file as a comment.

3-44 FTP

LS

Writes an extended directory listing of a remote directory or file to your terminal or to a local file
on the HP 1000.

Syntax

LS [remote listing] [local file]

Parameters

remote listing Specifies the remote directory or file mask from which a directory listing is
to be generated. If this parameter is omitted, LS lists the remote working
directory.

local file Specifies a valid file path on the local HP 1000 host to store the directory
listing. If this parameter is omitted, the directory listing is displayed on
your terminal.

Discussion

LS, without any parameters, lists the current remote working directory to your terminal.

To omit the remote 1isting parameter but specify the local file parameter, use a comma
as a placeholder for the first parameter, such as:

LS, ,local file
This command lists the current remote working directory to the specified local file.

The following table shows the FTP commands available for listing remote directories and files.
See the individual commands for listing a single directory or file (DIR, DL, LS, NLIST) for
samples of listing formats.

FTP Remote Listing Commands

Listing a Single Directory or File Listing Multiple Directories or Files

DIR—extended listing MDIR—extended listing
DL—extended RTE listing
Ls—extended listing MLS—abbreviated listing

NLIST—abbreviated listing

FTP 3-45

LS

Example
ftp> LS
200 PORT command successful.

150 Opening data connection for /bin/ls -1 (192.6.70.19,33123) (0 bytes).
total 30

—IrW-rw-Irw- 1 dwight ns1l000 600 Feb 1 09:59 testl
—IrW-rw-Irw- 1 dwight ns1l000 965 Feb 1 10:00 test2
—IrW-rw-Irw- 1 dwight ns1l000 1691 Feb 1 10:00 test3
—rW-rw-Irw- 1 dwight ns1l000 5008 Feb 1 09:47 test4
—IrW-rw-Irw- 1 dwight ns1l000 1350 Feb 1 10:04 testh5
—IrwW-r—--r—- 1 dwight nsl000 3655 Feb 1 09:46 tracker form

226 Transfer complete.
383 bytes transferred in 1.43 seconds [0.26 kbytes/second]

ftp>

3-46 FTP

MDELETE

Deletes multiple remote files.

Syntax
MDE [LETE] remote file [remote file ...]
Parameters
remote file Specifies a valid file path on the remote host to be deleted. This can be a

file or an empty directory.

The ellipsis (. . .) means that you may specify multiple remote files or
empty directories, delimited by a comma or by one or more blank spaces.

You may use wild card characters in the remote file names.

Discussion
If interactive mode is on (the default), FTP prompts you with a confirmation for each specified file
before deleting. The confirmation prompt looks like this:

mdelete filename (Yes, No, Break, Stop Asking) [Yes]?

where Yes (or carriage return) will proceed with the file deletion; No will abort this file’s deletion
and proceed to the next file; Break will abort MDELETE and return to the FTP prompt; and Stop
Asking will delete the rest of the files specified by MDELETE without further confirmation. (See

the first example below.)

If interactive mode is disabled, FTP simply deletes the specified remote files without any
confirmation prompt. (See the second example below.)

If globbing is enabled (the default), FTP expands the wild card characters before the deletion is
executed. However, if globbing is disabled, FTP tries to delete the specified file or directory “as
is.” Refer to the GLOB command for more information.

If a file specified by MDELETE does not exist, FTP ignores this file and does not issue an error.

Example

ftp> mdelete progl prog2 prog3 (interactive mode on)

mdelete progl (Yes, No, Break, Stop Asking) [Yes]? Y
mdelete prog2 (Yes, No, Break, Stop Asking) [Yes]? N

mdelete prog3 (Yes, No, Break, Stop Asking) [Yes]? Y

ftp> PROMPT (interactive mode off)
Interactive prompting disabled.

ftp> mdelete filel,file2,file3

ftp>

FTP 3-47

MDIR

Writes an extended directory listing of multiple remote directories or files to a local file.

Syntax
MD [IR] remote listing [remote listing ...] local file

Parameters

remote listing Specifies the remote directories or file masks from which a directory
listing is to be generated.
The ellipsis (. . .) means that you can specify multiple remote
directories or files, delimited by a comma or by one or more blank
spaces.

local file A valid file path on the local HP 1000 host to store the remote listing.

This parameter is required, because MDIR does not output the remote
listing to the terminal. FTP always uses the last parameter in the MDIR
command string as the local file.

Discussion

FTP prompts you for a confirmation of the Iocal file to be used. Note thatif local file
already exists, it is overwritten.

If a directory or file specified by remote 1listing does not exist, FTP ignores the MDIR
command and does not create the output directory listing.

The following table shows the FTP commands available for listing remote directories and files.
See the individual commands for listing a single directory or file (DIR, DL, LS, NLIST) for
samples of extended and abbreviated listing formats.

FTP Remote Listing Commands

Listing a Single Directory or File Listing Multiple Directories or Files

DIR—extended listing MDIR—extended listing
DL—extended RTE listing
Ls—extended listing MLS—abbreviated listing
NLIST—abbreviated listing

3-48 FTP

MGET

Transfers multiple remote files to the local host.

Syntax
MG [ET] remote file [remote file ...]
Parameters
remote file Specifies a valid file path on the remote host for the file to be transferred.

The ellipsis (. . .) means that you may specify multiple remote files,
delimited by a comma or by one or more blank spaces.

You may use wild card characters in the remote file names.

The files are transferred to local files with the same directory paths and
names as the source files.

Caution If a local file with the same file name already exists before the file transfer, it is
overwritten without warning.

Discussion

If interactive mode is on (the default), FTP prompts you with a confirmation for each specified file
before transferring. The confirmation prompt looks like this:

mget filename (Yes, No, Break, Stop Asking) [Yes]?

where Yes (or carriage return) will proceed with the file transfer; No will abort this file transfer
and proceed to the next file; Break will abort MGET and return to the FTP prompt; and Stop
Asking will transfer the rest of the files specified by MGET without further confirmation. (See the
example below.)

If interactive mode is disabled, FTP transfers the specified remote files without any confirmation.

If globbing is enabled (the default), FTP expands the wild card characters before the file transfer
is executed. However, if globbing is disabled, FTP tries to transfer the files “as is.” Refer to the
GLOB command for more information.

If a file specified with MGET does not already exist, FTP ignores this file and does not issue an
error.

FTP 3-49

MGET

Example

ftp> mget testl test2 test3

mget
mget
mget
ftp>

3-50 FTP

testl
test2

test3

(Yes,
(Yes,

(Yes,

No,
No,

No,

Break,
Break,

Break,

Stop Asking) [Yes]?
Stop Asking) [Yes]?

Stop Asking) [Yes]?

=<

[=

MKDIR

Creates a directory on the remote host.

Syntax

MK[DIR] remote directory [Ilu]

Parameters

remote directory Specifies a valid directory path on the remote host.

If a directory with the specified name already exists, FTP issues a
warning and ignores the command.

For more information about the HP 1000 file name syntax, refer to
“RTE-A Files and Directories” earlier in this section.

lu Specifies the LU on which the remote directory will reside.

Discussion

If you specify an LU for a remote host that is not an HP 1000, unpredictable results may occur.

The LU may be included in the directory name.

FTP 3-51

MLS

Writes an abbreviated directory listing of multiple remote directories or files to a local file.

Syntax
ML [S] remote listing [remote listing ...] local file
Parameters

remote listing Specifies the remote directories or file masks from which a directory listing
is to be generated.

The ellipsis (. . .) means that you may specify multiple remote directories
or files, delimited by a comma or by one or more blank spaces.

local file A valid file path on the local host to store the remote listing. This
parameter is required, because MLS always outputs the remote listing to a
local file and not to a terminal. FTP always uses the last parameter in the
MLS runstring as the Jocal file.

Discussion

FTP prompts you with a confirmation of the 1ocal file tobe used. Note thatif local file
already exists, it is overwritten.

If a directory or file specified by remote 1listing does not exist, FTP ignores the MLS
command and does not create the output directory listing.

The following table shows the FTP commands available for listing remote directories and files.
See the individual commands for listing a single directory or file (DIR, DL, LS, NLIST) for
samples of extended and abbreviated listing formats.

FTP Remote Listing Commands

Listing a Single Directory or File Listing Multiple Directories or Files

DIR—extended listing MDIR—extended listing
DL—extended RTE listing
Ls—extended listing MLS—abbreviated listing

NLIST—abbreviated listing

3-52 FTP

MODE

Specifies the file transfer mode.

Syntax

MO [DE] mode name

Parameters

A valid FTP file transfer mode. The only currently supported mode is
stream.

mode name

Discussion

Stream mode specifies that the data is transmitted as a stream of bytes. There is no restriction on
the representation type used. If the structure is a file structure (which is the default), the
end-of-file is indicated by the sending host closing the data connection and all bytes are data bytes.

Table 3-4 lists the FTP commands used to define file transfer form, mode, structure, and type.

Table 3-4. FTP File Transfer Form, Mode, Structure, and Type

Command Supported Meaning
Parameters

FORM non-print non-print specifies that no vertical format
information is contained in the file.

MODE stream Data is transmitted as a stream of bytes.

STRUCT file File is considered to be a continuous
sequence of data bytes.

TYPE* A[SCITI] Data is converted to the standard 8-bit
ASCII representation for transfer. Also see
the ASCII command.

B [INARY] Data is sent as it appears on disk. Also see
the BINARY command.

* ASCII file transfer type is the default when both systems are not Revision 6.0 (or later)
HP 1000s. To specify ASCII or binary, you may also use the ASCIT or BINARY command,

respectively.

FTP 3-53

MPUT

Transfers multiple local files to the remote host.

Syntax
MP [UT] local file [local file ...]
Parameters
local file Specifies a valid file path on the local host to be transferred to the remote

host.

The ellipsis (. . .) means that you can specify multiple local files, delimited
by a comma or by one or more blank spaces.

You may use wild card characters in the file names. The wild card
characters are expanded if globbing is enabled (the default).

The files are transferred to the remote host, under the same directory and
file names as the source files.

Caution If a remote file with the same file name already exists before the file transfer, it
is overwritten without warning.

Discussion

If interactive mode is on (the default), FTP prompts you with a confirmation for each specified file
before transferring. (See the example below.) The confirmation prompt looks like this:

mput filename (Yes, No, Break, Stop Asking) [Yes]?

where Yes (or carriage return) will proceed with the file transfer; No will abort this file transfer
and proceed to the next file; Break will abort MPUT and return to the FTP prompt; and Stop
Asking will transfer the rest of the files specified by MPUT without further confirmation. (See the
example below.)

If interactive mode is disabled, FTP simply transfers the specified remote files without a
confirmation prompt.

If globbing is enabled (the default), FTP expands the wild card characters before the file transfer
is executed. However, if globbing is disabled, FTP tries to transfer the files “as is.” Refer to the
GLOB command for more information.

If a file specified by MPUT does not exist, FTP ignores this file and does not issue an error.

354 FTP

MPUT

Note MPUT forces all destination file names to be lowercase. This is done to follow
the UNIX industry norm of using lowercase for filenames.
Example
ftp> mput fool FOO2 FOO3
mput fool (Yes, No, Break, Stop Asking) [Yes]? Y
mput foo2 (Yes, No, Break, Stop Asking) [Yes]? Y
mput foo3 (Yes, No, Break, Stop Asking) [Yes]? Y
ftp>

FTP 3-55

NLIST

Writes an abbreviated directory listing of a remote directory or file to your terminal or to a local
file on the HP 1000.

Syntax

N[LIST] [remote listing] [local file]

Parameters

remote listing Specifies the remote directory or file mask from which a directory listing is
to be generated. If this parameter is omitted, NLIST lists the remote
working directory.

local file Specifies a valid file path on the local HP 1000 host to store the directory
listing. If this parameter is omitted, the directory listing is displayed on
your terminal.

Discussion

NLIST, without any parameters, lists the current remote working directory to your terminal.

To omit the remote 1isting parameter but specify the local file parameter, use a comma
as a placeholder for the first parameter, such as:

NLIST,, local file
This command lists the current remote working directory to the specified local file.

The following table shows the FTP commands available for listing remote directories and files.
See the individual commands for listing a single directory or file (DIR, DL, LS, NLIST) for
samples of listing formats.

FTP Remote Listing Commands

Listing a Single Directory or File Listing Multiple Directories or Files

DIR—extended listing MDIR—extended listing
DL—extended RTE listing
Ls—extended listing MLS—abbreviated listing

NLIST—abbreviated listing

3-56 FTP

NLIST

Example

ftp> NLIST

200 PORT command successful.

150 Opening data connection for /bin/ls (192.6.70.19,32825) (0 bytes)
testl

test2

test3

test4

tracker form

226 Transfer complete.

49 bytes transferred in 0.22 seconds [0.22 kbytes/second]

FTP 3-57

OPEN

Establishes a connection with a specified remote host.

Syntax

O [PEN] host

Parameters

host Specifies the host to which you want to log on. You may use the host’s node
name or [P address.

The syntax for the host node name is shown here, and is further described
under “Node Names” in Section 1 of this manual.

node[.domain[.organization]]

The syntax for the host IP address is shown here, and is further described
under “IP Addresses” in Section 1 of this manual.

nnn.nnn.nnn.nnmn

Discussion

The OPEN command connects you to the remote host and then prompts you for a remote login and
password if auto-login is enabled (the default). If auto-login is disabled (when input is from a
transfer file), you must use the USER command to log in to a remote host. See the USER
command for more details.

There are two ways to establish connection to a remote host. You may

e Use the OPEN command at the FTP prompt, as described here.
e Specify the remote host when you invoke FTP. See “Invoking FTP” earlier in this section.

FTP can only have one connection open at a time. If you issue an OPEN command when a
connection to a remote host already exists, FTP issues a warning and ignores the command.

Note Logging in to an HP 9000: For security reasons, you can only log in to accounts
that have passwords associated with them. You must be able to supply FTP with
a valid login name and password on the remote host.

3-58 FTP

PROMPT

Toggles interactive prompting for multiple file operations.

Syntax

PR [OMPT]

Discussion
Interactive prompting occurs during multiple file operations to allow you to selectively proceed
with each file. By default, interactive mode is enabled.

Interactive prompting is also used by the MDIR and MLS command to confirm the use of the local
file as an output file.

Interactive mode may be disabled in one of two ways:

e With the PROMPT command described here.
e With the -1i option when you invoke FTP. See “Invoking FTP” earlier in this section.

If interactive mode is disabled, FTP simply performs multiple file operations without any
confirmation. If interactive mode is disabled, you must use the PROMPT command to enable it.

Example

The following example shows deleting multiple files with interactive mode on and then off.

ftp> mdelete progl prog2 prog3 (interactive mode on)

mdelete progl (Yes, No, Break, Stop Asking) [Yes]? Y
mdelete prog2 (Yes, No, Break, Stop Asking) [Yes]? N

mdelete prog3 (Yes, No, Break, Stop Asking) [Yes]? Y

ftp> PROMPT (interactive mode off)
Interactive prompting disabled.

ftp> mdelete testl test2 test3

ftp>

FTP 3-59

PUT

Transfers a local file to the remote host. Same as SEND.

Syntax

PU[T] local file [remote file]

Parameters
local file Specifies a valid file path on the local host to be transferred.
remote file Specifies a valid file path on the remote host to be transferred into. If this

parameter is omitted, FTP uses the local file path as the file name on the
remote host.

If a remote file name is specified without a directory, the current working
directory on the remote host is used.

Caution If a remote file with the same file name already exists, it is overwritten without
warning.

Discussion

Refer to MPUT, earlier in this section, for transferring multiple files.

For more information about the HP 1000 file name syntax, refer to “RTE-A Files and Directories”
earlier in this section.

Example

The first PUT command transfers file /user/example/test to file foo on the working
directory of the remote host.

The second example transfers file /user/example/test to /user/example/test on the
remote host. Note that the directory path /user/example/ must exist on the remote host, or
FTP will generate an error and not execute the PUT command. This is because no target file path
was specified, so FTP uses the source file path as the target file path.

ftp> PUT /user/example/test foo

ftp> PUT /user/example/test

3-60 FTP

PWD

Writes the name of the remote working directory to the terminal.

Syntax

PW [D]

Discussion

To change the remote working directory, use the CD command.

Example

ftp> PWD
257 “/DWIGHT/EXAMPLES” is the current working directory.

ftp>

FTP 3-61

QUIT

Closes the remote connection and exits from FTP. Same as BYE and EXIT.

Syntax

QUI [T]

Discussion

The FTP QUIT command closes the connection to the remote host, logs off the remote session,
terminates FTP, and returns you to the operating system of the local node. The QUIT command is
identical to the BYE and EXIT commands.

If you want to close the remote connection but remain in FTP, use the CLOSE command. See the
CLOSE command for more information.

3-62 FTP

QUOTE

Sends arbitrary server commands to the remote host.

Syntax

QUO [TE] arguments

Parameters

arguments Specifies a valid FTP server command to be sent to the remote host. The
arguments are sent “as is,” including commas if included.

Discussion

The QUOTE command is used to send an FTP server command to the remote host. This is
sometimes useful for debugging when you need to activate an FTP server command out of the
usual command sequence. To generate a list of server commands, use the REMOTEHELP
command.

Note that when using the QUOTE command, the responses received from the server command
might put FTP out of sequence.
Example

FTP’s REMOTEHELP command is used to list the FTP server commands, then the QUOTE
command is used to send the server commands, XPWD and CDUP.

ftp> remotehelp
214- The following commands are recognized (* =>’'s unimplemented) .

USER PORT STOR MSAM* RNTO NLST MKD CDUP
PASS PASV APPE MRSQ* ABOR SITE XMKD XCUP
ACCT* TYPE MLFL* MRCP* DELE SYST RMD STOU
SMNT * STRU MAIL* ALLO CWD STAT XRMD SIZE
REIN* MODE MSND* REST XCWD HELP PWD MDTM
QUIT RETR MSOM* RNFR LIST NOOP XPWD

ftp> quote xpwd
257 “/DWIGHT/EXAMPLES” is the current working directory.

ftp> quote cdup
200 CWD command successful.

ftp> quote xpwd
257 “/DWIGHT” is the current working directory

FTP 3-63

RECV

Transfers a remote file to the local host. Same as GET.

Syntax

REC[V] remote file [local file]

Parameters

remote file Specifies a valid file path on the remote host to be transferred to the local
host.

local file Specifies a file on the local host to be copied into.

If this parameter is omitted, the local file will have the same directory path
and file name as the remote file.

If a local file name is specified without a directory, the current working
directory of the local host is used.

Caution If a local file with the same file name already exists, it is overwritten without
warning.

Discussion

2

For more information about the HP 1000 file name syntax, refer to “RTE-A Files and Directories’
earlier in this section.

Example

The first RECV command transfers file, /USER/EXAMPLE /FOO, on the remote host to file,
TEST1, on the working directory of the local host.

The second RECV command transfers file, /USER/EXAMPLE /FOO, on the remote host to file,
/USER/EXAMPLE/FOO, on the local host. If the directory path /USER/EXAMPLE does not exist
on the local host, FTP generates an error and does not execute the RECV command. This is
because the local file parameter was omitted.

ftp> RECV /USER/EXAMPLE/FOO TEST1

ftp> RECV /USER/EXAMPLE/FOO

3-64 FTP

REMOTEHELP

Displays the currently supported FTP server commands on the remote host.

Syntax

REM [OTEHELP] [command]

Parameters

command Any FTP server command on the remote host. FTP displays help
information on the specified server command from the remote host.
If command is omitted, FTP displays a list of currently supported FTP
server commands on the remote host.

Example

The following example shows FTP server commands and help information on a command
displayed by REMOTEHELP.

ftp> REMOTE
214- The following commands are recognized (* =>’'s unimplemented) .

USER PORT STOR MSAM* RNTO NLST MKD CDUP
PASS PASV APPE MRSQ* ABOR SITE XMKD XCUP
ACCT* TYPE MLFL* MRCP* DELE SYST RMD STOU
SMNT * STRU MAIL* ALLO CWD STAT XRMD SIZE
REIN* MODE MSND* REST XCWD HELP PWD MDTM
QUIT RETR MSOM* RNFR LIST NOOP XPWD

ftp> REMOTE APPE
214 SYNTAX: APPE file-name

ftp>

FTP 3-65

RENAME

Renames a remote file or remote directory.

Syntax

REN [AME] remote old remote new

Parameters

remote old Specifies the original name of a remote file or remote directory to be
renamed.

remote new Specifies the new name for the remote file or remote directory.

If remote new already exists, FTP issues a warning and ignores the
command.

3-66 FTP

RMDIR

Removes an empty directory from the remote host.

Syntax

RM[DIR] remote directory
Parameters

remote directory Specifies a valid directory path on the remote host to be removed. The
directory must be empty or FTP issues a warning and ignores the command.

FTP 3-67

RTEBIN

Sets the transfer type to BINARY such that for subsequent PUT or MPUT commands if only the file
name is specified, then the file type, size, and record length are included in the destination file
descriptor.

Syntax

RT [EBIN]

Discussion

The RTEBIN command has two functions:
1. It sets the transfer type to BINARY.
2. It causes FTP to add the file type, size, and record length to the destination file descriptor(s)
when the user does a PUT or MPUT. The files thus retain this information in their file names
on non-RTE-A systems. RTEBIN is recommended when using PUT or MPUT to a

pre-Revision 6.0 RTE 1000 system; this will preserve the file attributes and improve
performance.

To disable the RTEBIN command feature, reset the transfer type to ASCII or binary with the
ASCII, BINARY, or TYPE commands.

Limitations:

1. The RTEBIN command should not be used if the remote file system does not support the
colon (:) character as a legal character in a file name.

2. The RTEBIN command affects only the PUT and MPUT commands by adding the file type,
size, and record length to the destination file descriptor, if they are not specified. That is, it
will PUT (or MPUT) destination files (with their full file descriptors) to the remote server
system but it will not PUT (MPUT) files with their full file descriptors if you are performing a
file transfer from a non-6.0 system, unless you specifically designate the file descriptors.

Example

ftp> RTEBIN
200 Type set to I.
ftp> PUT CI.RUN

This will create a file named CI .RUN:::6:528:128 on the remote system.

3-68 FTP

SEND

Transfers a local file to the remote host. Same as PUT.

Syntax

SE[ND] Iocal file [remote file]

Parameters
local file Specifies a valid file path on the local host to be transferred.
remote file Specifies a valid file path on the remote host to be transferred into. If this

parameter is omitted, FTP uses the local file path as the remote file name.

If a remote file name is specified without a directory, the current working
directory of the remote host is used.

Caution If a remote file with the same file name already exists, it is overwritten without
warning.

Discussion

2

For more information about the HP 1000 file name syntax, refer to “RTE-A Files and Directories’
earlier in this section.

Example

The first SEND command transfers a local file on the working directory, LFILE, to the working
directory on the remote host.

The second SEND command transfers file /user/example/test to file foo on the working
directory of the remote host.

ftp> SEND LFILE

ftp> SEND /user/example/test foo

FTP 3-69

SITE

Sends arguments, verbatim, to the server host as a SITE command.

Syntax

SI[TE] arguments

Parameters

arguments Specifies a valid FTP server SITE command to be sent to the remote host.
The arguments are sent “as is,” including commas if included.

Discussion

The SITE command is used to pass commands that request server-specific functions. The user
must use a REMOTEHELP SITE command to list the functions that the server supports. No
user-callable SITE functions are currently implemented in the HP 1000 FTP server.

Example

ftp>

ftp> open sable

Connecting to ... sable

220 sable FTP server (Version S$SRevision: 16.2
Mon Apr 29 20:45:42 GMT 1991) ready.

(username: dwight)

331 Password required for dwight.
(password: dwight)

230 User dwight logged in.

Remote system type is UNIX Type: LS.

ftp>
ftp> site umask

200 Current UMASK is 027

3-70 FTP

STATUS

Writes the current status of FTP to the terminal.

Syntax

STA [TUS]

Example

The following example shows a display after executing the STATUS command.

ftp> STATUS
Connected to: sable

Auto Login : ON Form : NON-PRINT Mode : STREAM Type : ASCII
Bell : OFF Glob : ON Prompt : ON Verbose : ON
Debug : OFF Hash : OFF Structure : FILE

Log file: FTP.LOG

FTP 3-71

STRUCT

Sets the FTP file transfer structure to the specified structure.

Syntax

STR[UCT] struct name

Parameters

struct_name Specifies the FTP file transfer structure. Currently, the only supported file
transfer structure is file.

Discussion

File structure means that there is no internal structure and the file is considered to be a
continuous sequence of data bytes.

Table 3-5 lists the FTP commands used to define file transfer form, mode, structure, and type.

Table 3-5. FTP File Transfer Form, Mode, Structure, and Type

Command Supported Meaning
Parameters

FORM non-print non-print specifies that no vertical format
information is contained in the file.

MODE stream Data is transmitted as a stream of bytes.

STRUCT file File is considered to be a continuous
sequence of data bytes.

TYPE* A[SCITI] Data is converted to the standard 8-bit
ASCII representation for transfer. Also see
the ASCII command.

B [INARY] Data is sent as it appears on disk. Also see
the BINARY command.

* ASCII file transfer type is the default when both systems are not Revision 6.0 (or later)
HP 1000s. To specify ASCII or binary, you may also use the ASCIT or BINARY command,
respectively.

3-72 FTP

SYSTEM

Returns the type of operating system running on the server.

Syntax

SY [STEM]

Example

The following example shows a SYSTEM command sent to an RTE-A system:
ftp> SYSTEM
215 RTE-A
ftp>
The following example shows a SYSTEM command sent to an HP-UX system:
ftp> SYSTEM
215 UNIX Type: L8
ftp>
If the server does not support the SYSTEM command, the following message is displayed:

502 Command not implemented.

FTP 3-73

TR

Specifies a local command input file (also called a transfer file) containing FTP commands.

Syntax

TR local file

Parameters

local file Specifies a local transfer file containing FTP commands. FTP executes the
commands in this file. The TR command lets you execute FTP from a
command file rather than entering each FTP command via your terminal
keyboard.

You may include any valid FTP commands in the transfer file.

FTP terminates when the EXIT, BYE, or QUIT command is executed. If the
end-of-file is found before any of these commands, control is passed back to
FTP.

Discussion

When you run FTP using a transfer file, FTP attempts to open the FTP.LOG log file if a log file is
not already open. FTP log files are opened with the LL, command or the -1 option in the FTP
runstring. FTP logs messages and other information from this FTP session into the log file. See
the LL command for more information on FTP log files.

You may specify an FTP transfer file in two ways:

e With the TR command as described here.
e With the -t option when you invoke FTP. See “Invoking FTP” earlier in this section.

You may include a TR command within a transfer file; that is, you may have chained TR transfer
files. However, FTP does not provide a way to return to the original transfer file at the point of
entry; that is, FTP always reads a transfer file sequentially from the first line of the file. Care
should be taken so that you do not end up in an endless loop when using multiple transfer files.
For example, if two transfer files (trl and tr2) are used, commands in trl are executed first and
then control is passed from trl to tr2 with the exection of the command “tr tr2” within the file tr1.
If control is passed back to trl from within tr2, the first line of tr1 will be the next one executed.
This will result in an endless loop and any commands that come after the “tr tr2” command in trl
will not be executed.

If you are using a transfer file to log on to a remote host, you must explicitly use the USER
command to log on to the remote host. This is necessary because auto-login is disabled when
input is from a transfer file.

In a transfer file, FTP treats any text on a line following an asterisk (*) as a comment.

374 FTP

TR

Example

The following is a simple transfer file to log in to a remote host, transfer two files between the
remote and local hosts, then log out.

EOR R R Sk b b b b b b b b S S R S R R R R R S S S S R R S Sk R S S Sk Sk S S

* **%%% SAMPLE FTP TRANSFER FILE ****%*

EOR R R Sk b b b b b b b b S S S R S R R R R R S S S R R S S R S S Sk Rk O S S S

*

* Enable Verbose Mode
*

VERBOSE

*

EOR R R R S b b b b S b b b S R S R R R R R R S S S S S R Rk R S S S R Rk O S S R

*

* Send output to NORA.LOG
*

LL NORA.LOG

*

EOR R Rk S b b b S b S b b S R S R R R R R S S S S S S kR S S Sk Rk S R

* Log into remote host SABLE, account DWIGHT, password MAC
*

OPEN SABLE

USER DWIGHT MAC

*
EOR R Rk S b b b b S S b S S R S R R R R R S S S S R S kR S S Sk Rk S S R

* Connect to directory /EXAMPLES/SOURCES

*
CD /EXAMPLES/SOURCES

*

Kok hkhkhkhkkhkkhkkhkkhkkhkkhkkkhkkhkkhhkkhkkhkkhkkhkkkkkkkk*

* Get a file from remote host to local host
*

GET TIMER.PAS /TEST/NEW_TIMER.PAS
*
hhkkkhhhhhhkhhhhhhkhkhhhhhhkhkhhhhhhkhkkhhhhhkkkhhhhhkkxhhhhkkkx*

* Put a file from local host to remote host
*

PUT PERSONAL/STATUS_REPORT /DWIGHT/THIS_MONTHS_STATUS
*
*khkkhkkhkhkhkkhkhhkhhkdhhhdhkhhdhhkdhhhdhhhdhhdhhhdhhdhdhhdhdhdhdhhdhddhdix*k
* Generate a directory listing and display FTP status
*

DIR

STATUS

*
EOR R Rk S b b b b b b b S R S R R R R R S S S S R S kR S S Ok Rk O S S Rk

* USE EXIT, BYE, OR QUIT TO RETURN TO CI.
* USE CLOSE OR NOTHING TO RETURN TO FTP

*

EXIT

ER R R S S kb b b b S S S S S S R R R R Rk kR R R Rk S kS kR S Rk R R Rk

FTP 3-75

TYPE

Sets the FTP file transfer type to the specified type.

Syntax

TY [PE] [type name]

Parameters

type name Specifies the FTP file transfer type. Currently, the only supported FTP file
transfer types are ASCII or A for ASCII transfer type and BINARY, B, or I
(for Image) for binary transfer type. If this parameter is omitted, TYPE
displays the current FTP file transfer type on the terminal.

The default file transfer type is ASCII when both systems are not Revision
6.0 (or later) HP 1000s.

Discussion

You may also use the ASCIT or BINARY command to specify ASCII or binary file transfer type,
respectively. Refer to these commands for more details.

Table 3-6 lists the FTP commands used to define file transfer form, mode, structure, and type.

Table 3-6. FTP File Transfer Form, Mode, Structure, and Type

Command Supported Meaning
Parameters

FORM non-print non-print specifies that no vertical format
information is contained in the file.

MODE stream Data is transmitted as a stream of bytes.

STRUCT file File is considered to be a continuous
sequence of data bytes.

TYPE* A[SCITI] Data is converted to the standard 8-bit
ASCII representation for transfer. Also see
the ASCII command.

B [INARY] Data is sent as it appears on disk. Also see
the BINARY command.

* ASCII file transfer type is the default when both systems are not Revision 6.0 (or later)
HP 1000s. To specify ASCII or binary, you may also use the ASCIT or BINARY command,

respectively.

3-76 FTP

USER

Logs on as a different user on the currently connected remote host.

Syntax
U[SER] [user name] [password]
Parameters
user name Specifies the account on the remote host to log on. If the user name is
not specified, FTP prompts you for it.
password Specifies the password for the account, if required. If a password is

required and not specified, FTP prompts you for it.

Discussion

If you are using a transfer file to log on to a remote host, you must use the USER command. See
the TR command for details on FTP transfer files.

To log on to a remote host with the USER command, you must already have an open connection to
the remote host. There are two ways to establish a connection to the remote host:

e With the OPEN command. See OPEN for details.
e With the host parameter when you invoke FTP. See “Invoking FTP” earlier in this section.

You do not need to use the USER command if auto-login is enabled and input is interactive (from
the keyboard). With auto-login, FTP automatically prompts you for the user name and password
after you open a connection to the remote host. By default, auto-login is enabled. (See “Invoking
FTP” for details on auto-login.)

FTP accepts only one login per connection. If you are currently logged into an account and you
issue a USER command to connect to another HP 1000 host, FTP logs out of the previous account
before attempting to log in to the new account. If you want to connect to another host that is not
an HP 1000, you must close the connection before issuing the USER command; otherwise you will
receive an error with the USER command.

Note Logging in to an HP 9000 remote host: For security reasons, you can only log in
to accounts that have passwords associated with them. You must be able to
supply FTP with a valid login and password on the remote host.

FTP 3-77

VERBOSE

Specifies verbose output. This command toggles verbose output.

Syntax

V [ERBOSE]

Discussion

Verbose output displays all responses from any remote host to which you are connected. These
responses tell you whether or not FTP commands completed successfully.

By default, verbose output is enabled if FTP input comes from your keyboard. Verbose output is
disabled if FTP input comes from an FTP transfer file. See the TR command for details on FTP
transfer files.

When verbose output is disabled, FTP performs the command issued and simply redisplays the
FTP prompt.

Verbose output may be enabled in one of two ways:

e With the VERBOSE command described here.

e With the -v option when you invoke FTP. See “Invoking FTP” earlier in this section.

Example

The following example shows a file transfer with verbose output, then another file transfer without
verbose output. Note the numbers 200, 150, and 226 are FTP command reply codes.

ftp> GET REMOTEDATA (verbose output on)

200 PORT command successful.

150 Opening data connection for REMOTEDATA

226 Transfer complete.

5123 bytes received in 5 seconds

ftp> VERBOSE (verbose output off)

ftp> GET REMOTEDATA2

ftp>

3-78 FTP

Network File Transfer

Overview

Network File Transfer (NFT) is an NS Common Service that enables you to copy files between NS
systems in your network. Files can be copied interactively using the program DSCOPY, or from
within a program by invoking the Dscopy call.

NFT includes features that allow you to:

Copy files between other non-HP 1000 systems. NS is implemented on the HP 1000, HP 3000,
HP 9000, and PC computers. NFT enables you to copy files between NS systems in your
network. Refer to the NS Cross-System NFT Reference Manual, part number 5958-8563 for
information on using NFT among these systems.

Copy remote files. Using NFT at your local system, you can copy files from your system to a
remote node, from a remote node to your system, and between remote systems. No user
intervention at the remote system or systems is required.

Translate file attributes. Translation of file attributes is performed transparently when files are
copied between different types of systems. You can also explicitly convert file attributes.

Copy groups of files. Directories and groups of files can be copied between NS-ARPA/1000
systems with a single command.

Access remote accounts. Files under any account can be accessed if you provide the correct
logon and password.

Copy all types of HP 1000 files. You can copy FMGR files as well as files in the hierarchical
file system. Sparse files (files that are missing intermediate records) can also be copied.

Note NFT cannot be used on HP 1000 computers to copy files to or from non-disk

devices.

Network File Transfer 4-1

Three-Node Model

NFT utilizes a three-node model to copy files between systems. Under the three-node model there
are three logical participants in the file copy process:

e The Initiator. Located on the system where the copy request originates, the Initiator receives
the user request and initiates the copy process.

e The Producer. Located on the same node as the source file, the Producer accesses that file
and produces the data that is to be copied.

o The Consumer. Located on the same node as the target file, the Consumer consumes the data
and writes it into the target file.

All three participants are logically distinct. They may be three separate processes on three
separate nodes, or any two, or all three, may reside on the same node. This is because the copy
request does not have to originate from either the source or the target node.

THREE-NODE MODEL

4-2

: INITIATOR : PRODUCER CONSUMER
: Receives Accesses the Consumes the :
X user : : source file : : source file '
' requests ' and produces ' data and X
X and Initiates X the data to X writes it '
' the file) be copied) to the '
X copy process ! ! target file !
\ ORIGINATING SOURCE FILE E TARGET FILE
! NODE ! NODE ! NODE '

Network File Transfer

Figure 4-1. Three-Node Model

File Copying Formats

NFT uses two file copying formats: Transparent Format and Interchange Format.

Transparent Format

Transparent Format is invoked by default when files are copied between NS-ARPA/1000 systems.
Transparent Format does not alter a file’s attributes, but simply copies the file. It should be used
when you want a low-overhead, maximum-speed file copy process between systems.

Interchange Format

When the source and the target system are different types of computers (for example, one is an
NS/9000 node and one is an NS-ARPA/1000 node), files copied from one to the other must be
converted to Interchange Format. Interchange Format consists of a set of attributes that describe a
file in a standard way so that it can be understood by any NS system.

Interchange Format is invoked by default whenever you use NFT to copy a file residing on one
type of system to another. You can also invoke Interchange Format explicitly by specifying one or
more Interchange Format options when copying a file. These options specify how the source file
will be read and how it will be stored in the target file.

When a file is copied using Interchange Format, it is translated into Interchange Format at the
source system before being copied to the target system. At the target system, the file is mapped
from Interchange Format into the target system’s file format. Interchange Format’s standard file
attributes enable the target computer to map the source file into a target file that has attributes
that match the source file’s as closely as possible.

Figure 4-2 is a conceptual view of Interchange Format.

PRODUCER NODE CONSUMER NODE
source target
file file
interchange interchange
format format

Figure 4-2. Interchange Format

RTE-A Type 6 files cannot be moved in Interchange Format.

Network File Transfer 4-3

Refer to the NS Cross-System NFT Reference Manual for information on copying files from one
type of computer to another.

Data Interpretation

Although the purpose of Interchange Format is to create an accessible target file on a system of a
different type, it does not ensure that the target file will be usable. This is because Interchange
Format changes a file’s attributes only; it does not perform data interpretation. Interchange
Format can create an unusable target file if the target system has a different representation for the
data present in the source file.

For example, if a file that contains floating point numbers is copied to a different type of
computer, there is no guarantee that the target system will be able to read the data as floating
point. Consequently, the usability of your target files must be determined by the applications that
use them.

Note Files copied to or from an HP 1000 in Interchange Format cannot have records
longer than 4400 bytes. Records can be truncated using the RSIZE option.
(The RSIZE option is described in the “Copy Descriptor” and
“DSCOPYBUILD?” subsections later in this section.)

4-4 Network File Transfer

Interactive Network File Transfer

You can use NFT interactively by running the program DSCOPY.

Syntax

, copydescriptor
DSCOPY I: , dscopycommand]

Parameters

copydescriptor A copy descriptor. May be a maximum of 256 characters long. The syntax
of copydescriptor is provided on the following page.

dscopycommand A DSCOPY command. The DSCOPY commands are described later in
this section.

Discussion

DSCOPY can be scheduled with a DSCOPY command, a copy descriptor, or without parameters.
(The DSCOPY commands and copy descriptor are described in the following pages.) DSCOPY
enters interactive mode, or terminates, depending on how it is scheduled.

When scheduled with a DSCOPY command (other than an +EX to exit), DSCOPY executes the
command and then enters interactive mode and displays the DSCOP> prompt. For example

ru, dscopy, +echo
DSCOP>

When scheduled with a copy descriptor, DSCOPY executes the request and then terminates. For
example

ru,dscopy,memo.txt to memo.txts>cricket.ind.hp
CI>

When scheduled without parameters, DSCOPY enters interactive mode and prompts for
commands until it is terminated. Termination will occur if the the +EX command is entered to
exit. For example

ru, dscopy
DSCOP>

If DSCOPY discovers an error while executing a command or copy descriptor it will print an error
message to the list file or device. Error codes, and the total number of errors that occurred, can
also be retrieved after DSCOPY terminates by examining the contents of the P-globals (FMGR),
or the return variables (CI). If FMGR is the command interpreter, the first P-global, 1P, will
contain the total number of errors that occurred, if any, and 2P will contain the most recent error
code. If CIis the command interpreter, SBRETURN1 will contain the total number of errors that
occurred, if any, and SRETURN?2 will contain the most recent error code.

For a complete listing of the DSCOPY error messages, refer to “DSCOPY Error Messages” in the
NS-ARPA/1000 Error Message and Recovery Manual, part number 91790-90045.

Network File Transfer 4-5

Copy Descriptor

The copy descriptor allows you to specify the files or directories you wish to copy.

Syntax

— i , — i

sfile[[slogon]] [>snode] {ATOA}tfile [[tlogon]] [>tnodel [, option] [,option] ...

Parameters

sfile The source file; the name of the file to be copied. Refer to “File Masks”
later in this section for an explanation of how HP 1000 file masks may be
used in this parameter. (The NS Cross-System NFT Reference Manual
explains file name syntax at other NS systems.)

[slogon] The logon and password, if any, at the node where the source file resides.
Must be enclosed in brackets ([1). This parameter is required if the
source node is a remote multiuser HP 1000. NS-ARPA/1000 is not
supported on a single user HP 1000 computer. (The NS Cross-System NFT
Reference Manual explains logon and password syntax at other NS systems.)

Default: 1f slogon is omitted and the source node is the local node, the
account under which DSCOPY was scheduled is used.

>snode The name of the source node. Must be preceded by “>.” The syntax of NS
node names is provided in Section 1, “Introduction,” of this manual.

Default: You may omit the organization, organization and domain, or all
parts of the node name. If the organization, or organization and domain,
are omitted, the local organization and/or domain will be used. If the
entire node name is omitted, it will default to the local node.

tfile The target file; the name the source file will acquire at the target node.
Refer to “File Masks” later in this section for an explanation of how
HP1000 file masks may be used in this parameter. (The NS Cross-System
NFT Reference Manual explains file name syntax at other NS systems.)

[tlogon] The logon and password, if any, at the target node. Must be enclosed in
brackets ([1). This parameter is required if the target node is a remote
multiuser HP 1000. (The NS Cross-System NFT Reference Manual explains
logon and password syntax at other NS systems.)

Default: 1f t1ogon is omitted and the target node is the local node, the
account under which DSCOPY was scheduled is used.

>tnode The name of the target node. Must be preceded by “>.” The syntax of NS
node names is provided in Section 1, “Introduction,” of this manual.

Default: You may omit the organization, organization and domain, or all
parts of the node name. If the organization, or organization and domain,

4-6 Network File Transfer

option

Copy Descriptor

are omitted, the local organization and/or domain will be used. If the
entire node name is omitted, it will default to the local node.

May be one or more of the options described below; there is no limit to the
number of options you can specify. Each option must be separated by a
comma, semicolon or space, but different delimiters cannot be used in the
same copy descriptor. If conflicting options are given (for example, ASCII
and BINARY), DSCOPY will issue a warning and the last option given will
take precedence.

Default: DSCOPY will use Transparent Format. Interchange Format is
used if the ASCII, BINARY, FIXED, FSIZE, RSIZE, STRIP, or
VARIABLE options are specified.

The first eight options described below cause Interchange Format to be
used. RTE-A Type 6 files cannot be moved in Interchange Format.

The following explanations describe how the Interchange Format options
operate when the source and target nodes are both NS-ARPA/1000 systems.
Refer to the NS Cross-System NFT Reference Manual for information on the
operation of these options in regard to other NS systems.

AS[CII] Specifies that records contain printable ASCII
characters and that spaces should be used as padding
when creating fixed length records. This option may be
used in conjunction with the STRIP option to indicate
that spaces should be stripped from the ends of records.

Default: 1f the source file is ASCII, the target file will be
ASCII.

BI [NARY] Specifies that records contain binary information and
that null characters (numeric zeros) should be used as
padding when creating fixed length records. This option
may be used in conjunction with the STRIP option to
indicate that nulls should be stripped from the ends of
records.

Default: 1f the source file is binary, the target file will be
binary.

FI [XED] Specifies that source file records should be formed into
fixed length records. (Record size can be specified using
the RSIZE option and the type of padding used can be
specified using the ASCII or BINARY options.)

Default: For HP 1000 type 1 and 2 source files, the
target file will have fixed length records. For other types
of HP 1000 files, the target file will have variable length
records.

Network File Transfer 4-7

Copy Descriptor

4-8

FS[IZE] =
filesize

IN [TERCHANGE]

RS[IZE]=

recordsize

ST [RIP]

VA [RIABLE]

Network File Transfer

Specifies how much space (filesize) to allocate

for the target file. If the target file has fixed length
records, filesize isinrecords. If the target file has
variable length records, filesize is the number of
maximum size records. This option can be used instead
of the HP 1000 file descriptor size parameter to specify
the size of an HP 1000 target file.

Default: The target file will be the same size as the
source file.

Overrides the default copy format and causes the file or
files to be copied using Interchange Format. RTE-A
Type 6 files cannot be moved in Interchange Format.

Default: DSCOPY will use Transparent Format.
Interchange Format is also used if the ASCII, BINARY,
FIXED, FSIZE, RSIZE, STRIP, or VARIABLE options
are specified.

Specifies the record size (recordsize) in bytes. If
fixed length records are being produced, recordsize
is the size of each record. If variable length records are
being produced, recordsize limits the size of the
largest record and records may be padded or truncated.
You cannot copy files with records longer than 4400
bytes to or from an HP 1000.

Default: The target file will have the same record size as
the source file.

Strips any record padding from the ends of records. You
can use this option to create variable length records
from fixed length records. (Also see the VARIABLE
option.) The type of padding to strip is based on the
type of the source file. For HP 1000 type 4 files, spaces
are stripped. In other HP 1000 file types, null characters
are stripped. You can use this option in conjunction with
RSIZE to truncate records. Records will be truncated
before padding is stripped.

Default: Padding is not stripped.

Specifies that source file records should be formed into
variable length records. The maximum size of a variable
length record may be given using the RSIZE option.

Default: For HP 1000 type 1 or 2 files, the target file will
have fixed length records. For all other HP 1000 file
types, the target file will have variable length records.

Copy Descriptor

The next four options do not invoke either Interchange Format or
Transparent Format. They can be used when a file is copied in either
format and do not affect the attributes of the target file. They can also be
used in conjunction with Interchange Format options.

MO [VE]

OV [ER]

QU [IET]

RE [PLACE]

SI[LENT]

Purges the source file after it has been successfully
copied to the target system. DSCOPY will issue a
warning if the file cannot be purged. You must have
proper access rights, including any security code, to
purge the file. If a directory is copied, the files within
the directory and any subdirectories will be purged, but
the directory and subdirectories will not be purged.

Default: The source file is not purged.

Causes a copy of the source file to overwrite an existing
target file, beginning with the first record. If the source
file is larger than the existing target file, NFT will copy
as much of the source file as will fit in the existing file
space and will then return an error. If the source file is
smaller than the target file, then the contents of the
existing file that extend beyond the end of the copied
source file will remain in the target file. If the target file
does not exist, a new file will be created. The attributes
of the source and target files must match, or NFT will
return an error message.

If you do not specity this option, existing target files will
not be overwritten.

Suppresses the printing of warnings and file names to
the list file or device. Error messages cannot be
suppressed.

Default: Warnings, file names, and error messages are
printed to the list file.

If the target file exists, this option causes it to be purged
and a new file created by the same name. The original
file is purged only after the new file is copied
successfully to the target system in a scratch file.

Default: The target file is not replaced and an error
message is returned if it already exists.

Suppresses the printing of warnings, file names, and
error messages to the list file or device. Same as the
QUIET option, except that error messages are also
suppressed. Recommended for programmatic use.

Default: Warnings, file names, and error messages are
printed to the list file.

Network File Transfer 4-9

Using DSCOPY

The

following rules should be observed when you use DSCOPY. Some have been discussed

earlier but are repeated here so that they may be easily referenced.

4-10

Copy Descriptor Syntax. A space must precede and follow the “TO” if it is used to separate
source and target specifications in a copy descriptor. If a comma is used, no spaces are
necessary.

Copy Descriptor Length. A copy descriptor may be a maximum of 256 characters long. If your
copy descriptor exceeds this character limit, you may default portions of it using the
+DEFAULT command. (The +DEFAULT command is described later in this section.)

Case Sensitivity. Copy descriptor file names and logon strings are upshifted by CI and FMGR
if they are typed as part of the DSCOPY runstring; they are not upshifted when typed in
response to a DSCOPY prompt or when read from a command file via the DSCOPY
command +TR. The grave accent (‘) may be used to prevent CI from casefolding.

Logons and Multiuser. The copy descriptor parameters, slogon and tlogon parameters are
required with HP 1000 computers. NS-ARPA/1000 also requires that the HP 1000 computer
must be a multiuser HP 1000 computer. “Multiuser” is part of the 92078A Virtual Code
Package known as VC+. For information about logons and passwords at other NS systems,
refer to the NS Cross-System NFT Reference Manual.

Line Continuation. Only one copy descriptor may be issued per line. If a single copy
descriptor exceeds one line, you can append a continuation character (“&”) to the descriptor.
If spaces are placed between the copy descriptor and the continuation character they are
considered part of the copy descriptor. When DSCOPY encounters the continuation
character it will prompt you for the remainder of the copy descriptor. If you wish to modify a
copy descriptor that ended with a continuation character you can type Yanda
carriage return. DSCOPY will then flush the copy descriptor. If you end a copy descriptor
with a continuation character and then discover the copy descriptor is complete, a carriage
return entered at the continuation prompt will cause the copy descriptor to be executed.

RTE File Names and Logons. Because RTE file names can consist of the control characters
used in the copy descriptor (“[”, “+” and “>”), some file names may be misinterpreted by
DSCOPY. To ensure that DSCOPY correctly interprets file names that contain these

characters, you can use single quotations marks as shown in Table 4-1.

Protection Mode and Update Time. Files copied from one HP 1000 to another using
Transparent Format retain their protection mode and update time at the target system.
(Protection modes and update time are explained in the RTE-A User’s Manual.)

DS/1000-1V Files. Files can be copied from a DS/1000-IV node to an NS-ARPA/1000 node
and then onto another NS-ARPA/1000 node. The DS/1000-1V file descriptor must be
enclosed in single quotes. Also, the DS/1000-1V node must be connected to an
NS-ARPA/1000 node on a LAN network.

Network File Transfer

Table 4-1. RTE File Names and Logons

File Name/Logon Typed File Name/Logon as Interpreted by DSCOPY

" ["Filename [JON/99] File: [Filename

Logon: JON/99

"+Filename>' [JON.GROUP] File: +Filenames>

Logon: JON.GROUP

"’Filename "Filename

Note Unlike CI, DSCOPY uses single quotation marks to quote control characters.
CI uses grave accents.

HP 1000 File Names and Logons

The logon and file name specifications used at NS-ARPA/1000 nodes are identical to those you
usually use at your HP 1000. NFT uses the following defaults in the source and target file
specifications for HP 1000 nodes:

e If a subdirectory is included in the file specification and the directory is omitted, the default
logon working directory for the logon specified is searched for the subdirectory.

e If only a file name is specified (i.e., no directory or subdirectory is specified), the default
logon working directory for the logon specified is used.

HP 1000 File Masks

By using file masks in the source file name and target file name parameters of your copy
descriptors, you can:

o Copy groups of files. A single copy descriptor can copy multiple files if a file mask is used for
the source file name.

® (reate target file names. You can create target file names from source file names by
substituting a file mask for part, or all, of the target file name. A file mask can be used for
both the file name and the file’s type extension in the target file name. If an entire directory
of files is copied, a target file mask can be used to cause the directory, subdirectories and files
to retain their original names at the target node. In the following example, the runstring
creates a target file named wilma.pas at the HP 1000 target node:

ru,dscopy, fred.pas,wilma.@

Network File Transfer 4-11

All of the file mask features defined by the RTE-A file system can be used as source file masks in
the sfile parameter. DSCOPY appends the “d” qualifier to the source file name whenever a
file is copied using a wildcard mask in the source file parameter. (If any directory matches the
mask, the “d” qualifier causes all files in that directory to be copied. This can be overridden with
the “n” mask qualifier. The “d” and “n” qualifiers are explained in detail in the RTE-A User’s
Manual.) If a source file is masked to copy a directory, the files within the directory will retain
their hierarchical structure at the target node.

Only the wildcard character “at” (@) can be used in the tfile parameter to form target file
names; you cannot use any of the other RTE-A file mask features. DSCOPY uses this wildcard
character as a target file mask in the same way as the Command Interpreter unless the source file
is sparse. If the source file is sparse, DSCOPY will ignore the file type, size and record length
parts of the file mask. This is done to preserve the integrity of the file at the target node.

For an extensive discussion of HP 1000 source and target file masks, refer to the RTE-A User’s
Manual.

Interrupting the Copy Process

You can interrupt the copy process by entering breakmode and setting DSCOPY’s break bit while
DSCOPY is executing. When DSCOPY senses that its break bit has been set, it will prompt you to
choose a function to be performed. If you do not want to execute one of the functions offered, you
can exit breakmode by typing a carriage return and DSCOPY will resume execution.

In the following example, a key is struck, breakmode is entered and DSCOPY prompts for a
function. You may type A to Abort, C to Cancel, S for Status information, or H for Help.

CM> br,dscopy

Dscopy: Abort, Cancel, Status, Help (CR to continue)

The following is an explanation of each DSCOPY breakmode command:

e Abort. Terminates DSCOPY and saves the portion of the target file that has been created thus
far. You can also use the A command to exit an active transfer file and return control to the
scheduling terminal. Although you can abort a file copy at any time, the target file may be in
an inconsistent state if aborted prematurely.

® (ancel. Terminates DSCOPY and purges the target file. You can also use the C command to
exit an active transfer file and return control to the scheduling terminal. You can cancel a file
copy at any time.

e Status. Indicates the percentage of the file that has been transmitted to the target node; not
all of this data may actually have been received at the target. This number is not exact and
should be considered an estimate.

e Help. Provides an explanation of the A, C and S commands.

4-12 Network File Transfer

Examples

The following examples show files being copied with DSCOPY in both Transparent and
Interchange Formats.

Transparent Format

In this example, a global directory called games and all subdirectories and files are copied to a
subdirectory on a remote NS-ARPA/1000 node. The directory games will first be created within
joesfiles if it does not already exist. The target file mask used after joesfiles will cause
games, and all the subdirectories and files in games, to retain their original names. The MOVE
option is specified so that the source files are purged after they are successfully copied to the
remote node. The QUIET option is specified to suppress all output, except error messages, to the
list file or device. (Note the space before and after the TO, the lack of a space before the
continuation character, and the “Continue:” prompt.)

ru,dscopy, /games.dir to /joesfiles/@[joel&
Continue: >cricket.ind.hp,move,quiet

Interchange Format

In this example, a file called ipc1.1st is copied to a remote NS-ARPA/1000 node called
mantis.ind.hp. The RSIZE option is used to create 10 byte records in the target file. If the
source file contains records that are longer than 10 bytes, they will be truncated and DSCOPY will
issue a warning message.

ru,dscopy,ipcl.lst to /listfiles/@[liz]s>mantis.ind.hp,rsize=10

Optimizing Performance

DSCOPY copies files across data communications connections that it establishes after receiving
the copy descriptor. After a file is copied, DSCOPY maintains these connections so that the next
copy descriptor issued can make use of them. If the next copy descriptor cannot utilize the same
connections, the connections are dismantled.

Because setting up connections can be time consuming, you should group copy descriptors that can
utilize the same connections together whenever possible. For example, if the target logon or target
node name changes from one copy descriptor to the next, the connection between the source and
target computers is dismantled but the connection between DSCOPY and the computer where the
source file resides is maintained. If the source logon or source node name changes, however, all
connections are dismantled.

In the following examples, files are copied from an HP 1000 called mantis.ind.hp to an
HP 1000 called cricket.ind.hp. The user initiates NFT from another node, an HP 1000
called butterfly.ind.hp. (Thus, the initiator is located at butterfly.ind.hp, the
producer is located at mantis.ind.hp, and the consumer is located at cricket.ind.hp.)
Although a different logon is used in the second copy descriptor, the connection between

Network File Transfer 4-13

DSCOPY at the user’s node and mantis.ind.hp, the computer where the source files exist, is
maintained.

ru, dscopy

dscopy> /meetings/minutes.txt[liz]>mantis.ind.hp to memos/minutes.txt&
Continue: [liz]scricket.ind.hp

DSCOP> /programs/proga.ftn[liz] to progs/proga.ftn&

Continue: [jacquie] >cricket.ind.hp

NFT and DS/1000-IV Files
NFT is also supported between a DS/1000-IV node and NS 3000/V and NS/9000 Computers,

provided that the DS/1000-IV node is connected to an NS-ARPA/1000 node on the LAN network
(see Figure 4-3 below). In this case, the DS/1000-IV node cannot be the initiator.

Can be initiator, producer, or consumer

DS/1000-IV NS/1000 NS3000/V NS/9000

(producer
or
consumer
only)

Figure 4-3. NFT and DS/1000-1V

4-14 Network File Transfer

DSCOPY Commands

In addition to the copy descriptor, ten commands can be used with the DSCOPY program:

e +CLEAR. Clears all the copy descriptor defaults previously set with the +DEFAULT command.
e +DEFAULT. Sets defaults for selected portions of subsequently issued copy descriptors.

e +ECHO. Causes commands to be echoed, or not echoed, to the list file or device.

e +EX. Exits DSCOPY.

e +LL. Changes the list file or device.

e +RU. Runs a program from within DSCOPY.

e sHow. Shows all currently active copy descriptor defaults set with the +DEFAULT command.
e +TRANSFER. Transfers control to a command file or device.

e +wD. Displays or changes the current working directory.

e 2. Requests help information for any DSCOPY command or copy descriptor option. Can
also be used to provide a general help summary.

Each command, with the exception of ?, must begin with a plus (“+”) so that DSCOPY can
distinguish it from a copy descriptor. Only one command can be issued per line.

Network File Transfer 4-15

+CLEAR

Clears all currently active copy descriptor defaults that have been set with the +DEFAULT
command.

Syntax

+CL [EAR]

Discussion

Refer to the +DEFAULT command for more information.

4-16 Network File Transfer

+DEFAULT

Sets defaults for portions of subsequently issued copy descriptors.

Syntax

+DE [FAULT] , copydescriptor

Parameters

copydescriptor A copy descriptor. Refer to the copy descriptor description for the
syntax of copydescriptor.

Discussion

You can use the +DEFAULT command to set your own defaults for any copy descriptor parameter
with the exception of the source and target file names. DSCOPY will use these defaults when a
copy descriptor is issued that omits parameters for which defaults were set. If you do not use
+DEFAULT, DSCOPY’s own defaults are used when parameters are omitted. (Refer to the copy
descriptor syntax in this section for an explanation of DSCOPY’s defaults.) By defaulting portions
of a copy descriptor, you can specify a copy descriptor in excess of the 256 character limit.

If a portion of a subsequently issued copy descriptor conflicts with a default set with +DEFAULT,
the copy descriptor settings will take precedence and DSCOPY will issue a warning. Issuing a
copy descriptor that conflicts with a default set with the DEFAULT command does not change the
default setting.

After using +DEFAULT to set a remote logon for the slogon or t1ogon parameters, you may
want to use the local logon temporarily. To do this, type a null logon string (“[1) in your copy
descriptor. This will cause the default logon (the account under which DSCOPY was scheduled)
to take precedence over the default set with the +DEFAULT command. DSCOPY will issue a
warning.

If the snode or tnode parameters have been defaulted and you want to use the local node name
temporarily, this can be done by specifying the local node name, or a null node name (> only), in
the source node and target node parameters of your copy descriptor. DSCOPY will issue a
warning.

Examples

The following command sets the defaults for the source logon (donald), the source node
(cricket.ind.hp), the target node (mantis.ind.hp), and two options (ASCII and QUIET):

DSCOP> +default, [donald] >cricket.ind.hp, >mantis.ind.hp,ascii,quiet

You can selectively clear and reset the defaults specified in the previous example by reissuing the
+DEFAULT command with new defaults. In the following example, both the source logon and
source node defaults (set to [donald] and >cricket.ind.hp in the preceding example) are

Network File Transfer 4-17

+DEFAULT

cleared by specifying null strings. The ASCII option is changed to BINARY. Because they are not
reset, the target node and QUIET defaults are unchanged.

DSCOP> +DEFAULT, []>, ,BINARY

The +DEFAULT command can save typing if multiple files must be copied between the same two
nodes, but the files cannot be selected by using a source file mask. In the following example, three
files are copied from a remote HP 1000 node named nodel.lab.hp to another remote HP 1000
node named node2.mktg.ind. Defaults are established with the +DEFAULT command for the
source and target logons and node names. The “at” (@) wildcard character is used in the tfile
parameter so that the file names will be retained at the target node.

ru,dscopy, +default, [jack] >snodel.lab.hp to [jill]>node2.mktg.hp

DSCOP> memo.txt to @
DSCOP> helpfile to @
DSCOP> lastfile to @

4-18 Network File Transfer

+ECHO

Causes commands to be echoed, or not echoed, to the list file or device.

Syntax
+EC [HO] |:'ON]
, OFF
Parameters
ON Causes commands to be echoed to the list file or device. This is the default
if +ECHO is issued without a parameter.
OFF Turns echo off. (DSCOPY does not echo commands to the list file or

device by default.)

Discussion

If echo is ON, your commands are echoed to the list file or device. If echo is OFF, commands are
not echoed. You may want to turn echo “ON” when you are transferring control to a command
file because it allows you to see which command is being executed.

Network File Transfer 4-19

+EX

Exits DSCOPY.

Syntax

+EX

Discussion

Use the +EX command to terminate DSCOPY.

4-20 Network File Transfer

+LL

Changes the list file or device.

Syntax

+LL, 1filedev

Parameters

I1filedev The name of a list file or the LU of a device.

Discussion

The +LL command changes the list file or device to that specified in the 1filedev parameter.
The default list device is the LU number of the scheduling terminal. Warnings and file names are
written to the list file or device unless suppressed by the QUIET option in the copy descriptor.
Errors are always printed to the list file or device.

Network File Transfer 4-21

+RU

Runs a program from within DSCOPY.

Syntax

+RU, progname

Parameters

progname The name of the program to be run.

Discussion
If the program is scheduled successfully, DSCOPY will wait until it completes. The DSCOPY +RU

command is identical to the Command Interpreter RU command. Refer to the RTE-A User’s
Manual for more information.

4-22 Network File Transfer

+SHOW

Shows all currently active copy descriptor defaults set with the +DEFAULT command.

Syntax

+SH [OW]
Discussion

You can use this command to confirm that the proper defaults have been set with the +DEFAULT
command.

Network File Transfer 4-23

+TRANSFER

Transfers control to a command file or device.

Syntax

+TR [ANSFER] , cmdfiledev

Parameters

cmdfiledev The name of the command file or the LU of the device that will have
control.

Discussion

The +TRANSFER command allows you to transfer control to a command file or device. The
commands and copy descriptors that are entered in the command file or at the device should be
identical to those you would enter interactively in response to the DSCOP> prompt. When the last
command is executed, control is returned to DSCOPY.

Comments can be included in a command file by beginning a line with an asterisk (*). Any
command that begins with an asterisk is ignored by DSCOPY.

DSCOPY commands can be nested but they cannot be stacked. You can transfer control to a
command file from within another command file, but control will never return to the initial
command file.

Examples

The following command transfers control to a command file called commands . cmd.

ru,dscopy, +transfer, commands.cmd

The contents of file commands . cmd are as follows:

memo.txt to memo.txt[joe]>cricket.ind.hp
+wd

When the commands in commands . cmd are executed, file memo . txt will be copied to a remote
node called cricket.ind.hp and the working directory will be displayed. After +WD command is
executed, DSCOPY will enter interactive mode.

4-24 Network File Transfer

+WD

Displays or changes the current working directory.

Syntax

+WD [, directoryname]

Parameters

directoryname The name of the new working directory. May be a subdirectory.

Discussion

If used with a parameter, this command changes the current working directory to the directory
specified in directoryname. The +WD command will display the current working directory if
used without a parameter. This command is identical to the Command Interpreter WD command.
Refer to the RTE-A User’s Manual for more information.

Network File Transfer 4-25

? (HELP)

Requests help information for any command or copy descriptor option.

Syntax

? [, commandoption]

Parameters

commandoption Any DSCOPY command or copy descriptor option.

Discussion

The ? command will provide information on any command or copy descriptor option. If no
parameter is given, ? will provide a general help summary including DSCOPY command and copy

descriptor options.

4-26 Network File Transfer

Programmatic Network File Transfer

Two calls are provided to copy files programmatically: DscopyBuild and Dscopy. The
DscopyBuild call creates a copy descriptor that is used by the Dscopy call to copy the file or

files specified.

Two programmatic examples, one in Pascal/1000 (Version 2) and one in Fortran 77, are provided
at the end of this section.

Network File Transfer 4-27

DSCOPY

Copies a file or files.

Syntax

DSCOPY (builtdescriptor , result)

Parameters

builtdescriptor Character array (FORTRAN); String (PASCAL). A buffer of
variable length that contains a copy descriptor or a DSCOPY command.
The builtdescriptor parameter may be created programmatically by
calling DscopyBuild. (DscopyBuild is described later in this section.)

result Array of 16-bit integers. A five-word array returned by Dscopy.
The first word contains the number of errors that occurred while the file, or
files, were being copied. The second word returns the error code, if any;
zero is returned if the file or files are copied successfully. (If multiple files
are copied, the error code is the result of the last attempted file copy.) The
last three words of this parameter are reserved for future use. The DSCOPY
error codes are described in the NS/1000 Error Message and Recovery
Manual.

Discussion

If a copy descriptor is specified in the builtdescriptor parameter, DSCOPY will execute the
request and then terminate. Control will then be returned to the calling program.

If a DSCOPY command is specified in the builtdescriptor parameter, DSCOPY will execute
the command and then enter interactive mode. However, if the command is +EX (to exit),
DSCOPY will terminate and control will be returned to the calling program.

If your program is written in Pascal/1000, Version 2, you must set the FIXED STRING option
before declaring Dscopy. In addition, the routines SetStrLen and StrMax must be used to
initialize the builtdescriptor string. FIXED STRING, SetStrLen and StrMax are
described in the Pascal/1000 Reference Manual.

If your program is written in Pascal/1000, Version 1, you must use the routine StrDsc to convert
the builtdescriptor string to a format that can be processed by both the calling program and
DSCOPY. This routine is described in the RTE-A Programmer’s Reference Manual.

4-28 Network File Transfer

DSCOPYBUILD

Builds a copy descriptor to be used in the Dscopy call.

Syntax

DSCOPYBUILD (builtdescriptor,sfile, slogon, snode, tfile, tlogon,

Parameters

tnode, options, rsize, fsize)

builtdescriptor Character array (FORTRAN); String (PASCAL). The returned

sfile

slogan

snode

tfile

copy descriptor to be used in the Dscopy call. Will be blank-padded if
less than the length declared.

Character array (FORTRAN); String (PASCAL). The source
file; the name of the file to be copied. Refer to “File Masks” earlier in this
section for an explanation of how file masks may be used in this parameter.
(The NS Cross-System NFT Reference Manual explains file name syntax at
other NS systems.)

Character array (FORTRAN); String (PASCAL). The logon and
password, if any, at the node where the source file resides. Do not enclose
in brackets. This parameter is required if the source node is a remote
multiuser HP 1000. NS-ARPA/1000 is not supported on a single user

HP 1000 computer. (The NS Cross-System NFT Reference Manual explains
logon and password syntax at other NS systems.)

Default: If this parameter is a string of blanks and the source node is the
local node, the account under which the program is running is used.

Character array (FORTRAN); String (PASCAL). The name of
the source node. The syntax of NS node names is described in Section 1,
“Introduction,” of this manual.

Default: If this parameter is a string of blanks, snode will default to the
local node. You may omit the organization and domain, or substitute a
string of blanks for this parameter. If the organization, or organization and
domain, are omitted, the local organization and/or domain will be used. If
a string of blanks is used, the node name will default to the local node.

Character array (FORTRAN); String (PASCAL). The target
file; the name the source file will acquire at the target node. Refer to “File
Masks” earlier in this section for an explanation of how HP 1000 file masks
may be used in this parameter. (The NS Cross-System NFT Reference
Manual explains target file syntax at other NS systems.)

Network File Transfer 4-29

DSCOPYBUILD

tlogon Character array (FORTRAN); String (PASCAL). The logon and
password, if any, at the target node. Do not enclose in brackets. This
parameter is required if the source node is a remote multiuser HP 1000.
NS-ARPA/1000 is not supported on a single user HP 1000 computer. (The
NS Cross-System NFT Reference Manual explains logon and password syntax
at other NS systems.)

Default: 1If this parameter is a string of blanks and the target node is your
local node, the account under which the program is running is used.

tnode Character array (FORTRAN); String (PASCAL). The name of
the target node. The syntax of NS node names are described in Section 1,
“Introduction,” of this manual.

Default: If this parameter is a string of blanks, snode will default to the
local node. You may omit the organization and domain, or substitute a
string of blanks for this parameter. If the organization, or organization and
domain, are omitted, the local organization and/or domain will be used. If
a string of blanks is used, the node name will default to the local node.

options 32-bit integer. A two-word (32-bit) parameter which identifies
specific options. An option is included if its corresponding bit is set. If no
bits are set, no options are specified. The options and their corresponding
bits are listed below (zero represents the least significant bit). These
options are equivalent to those that can be used with DSCOPY
interactively.

For an explanation of the meaning of the following options, refer to the
“Copy Descriptor” discussion in this section.

0 Reserved for future use.
1 ASCII

2 BINARY

3 Reserved for future use.
4 FIXED

5 INTERCHANGE

6 MOVE

7 OVERWRITE

8 QUIET

9 REPLACE

10 STRIP

11 VARIABLE

12 SILENT

13 through 31 Reserved for future use.

4-30 Network File Transfer

rsize

fsize

Discussion

DSCOPYBUILD

32-bit integer. Appends the RSIZE option to the
builtdescriptor. The value in rsize is in bytes. If fixed length
records are being produced, rsize is the size of each record. If variable
length records are being produced, rsize limits the size of the largest
record and records may be padded or truncated. If rsize is zero, the
RSIZE option is not appended to the builtdescriptor and the target
file will have the same record size as the source file. You cannot copy files
with records longer than 4400 bytes to or from an HP 1000.

32-bit integer. Appends the FSIZE option to the
builtdescriptor. The value in £size specifies how much space to
allocate for the target file. If the target file has fixed length records, fsize
is in records. If the target file has variable length records, fsize is the
number of maximum size records. You can use this option instead of the
HP 1000 file descriptor size parameter to specify the size of an HP 1000
target file. If £size is zero, the FSIZE option is not appended to the
builtdescriptor and the target file will be the same size as the source
file.

If your program is written in Pascal/1000, Version 2, you must set the FIXED STRING option
before declaring DscopyBuild. In addition, the Pascal routines SetStrLen and StrMax must
be used to initialize the builtdescriptor string prior to calling DscopyBuild.

FIXED STRING,

SetStrLen and StrMax are described in the Pascal/1000 Reference Manual.

If your program is written in Pascal/1000, Version 1, you must use the routine StrDsc to convert
the builtdescriptor string to a format that can be processed by both the calling program and
DSCOPY. This routine is described in the RTE-A Programmer’s Reference Manual.

Network File Transfer 4-31

Programmatic Examples

Below are two example programs, one in Pascal and one in FORTRAN.

SPASCAL ’91790-16239 REV.5240 <860303.1238>"

SCDS$
$ CODE_CONSTANTS OFF $
$ DEBUG $

—_
——

NAME: COPY
SOURCE: 91790-18239
RELOC: 91790-16239
PGMR: VH

MODIFICATION HISTORY

DATE PGMR DESCRIPTION

e L e L
——

{ 053091 VH Modified to get nodename and user/passwd.

{}

PROGRAM COPY (input,output) ;

CONST
FIXED OPT = 16;
QUIET OPT = 256;
REPLACE OPT = 512;

TYPE
CommandType = String [150];
Integerlé6 = —-32768..32767;
FileNameType = String [64];
LogonType = String [30];
NodeNameType = String [20];
FiveWordsType = ARRAY [1..5] OF Integerlé;

VAR
command : CommandType;
options : Integer;
result : FiveWordsType;
source_name : FileNameType;
target name : FileNameType;
nodename : NodeNameType;
login : LogonType;

$FIXED STRING ONS

PROCEDURE Dscopy
(VAR command : String;
VAR result : FiveWordsType) ; EXTERNAL;

4-32 Network File Transfer

PROCEDURE DscopyBuild

(VAR command String;
source file FileNameType;
source_logon LogonType;
source_node NodeNameType;
target file FileNameType;
target logon LogonType;
target node NodeNameType;
options Integer;
rsize : Integer;
fsize : Integer) ; EXTERNAL;

BEGIN {main program}

{1

{ get nodename

{1

prompt (’Enter node name: ') ;
readln (nodename) ;

{1

{ get login/passwd.

{1

prompt (’Enter login/passwd: ') ;
readln (login) ;

{read the source and target file names}

prompt (’Enter source name: ') ;
readln (source name) ;

prompt (’Enter target name: ’);
readln (target name) ;

{set bit for each desired option in the options bit array}
options := FIXED OPT + QUIET OPT + REPLACE OPT;

{initialize the command string}

SetStrLen (command, StrMax (command)) ;

{default the source logon, source node, and set RSIZE = 80 bytes}

DscopyBuild (command, source name, ' ', ’ ', target name,
login, nodename, options, 80, 0);

Dscopy (command, result);
{print the result}

writeln (’Total errors: ', result [1]);
writeln (’Error code: ', result [2]);

END. {main program}

Network File Transfer

4-33

FTN77,L
$CDS ON

PROGRAM COPY (4,99),91790-16240 REV.5240 <860303.1238>

c

c NAME: COPY

c SOURCE: 91790-18240

c RELOC: 91790-16340

c PGMR: VH

c

C MODIFICATION HISTORY

C ———m— e — —

C DATE PGMR DESCRIPTION
C 053091 VH modified to take nodename and login/passwd.
c

CHARACTER nodename*50

CHARACTER login*32

CHARACTER command*150, source name*64, target name*64
INTEGER*4 options, fsize, rsize

INTEGER result (2)

PARAMETER (FIXED OPT=16, QUIET OPT=256, REPLACE OPT=512)

write (1,’ (“Enter node name: ")')

read (1,’ (A50)’) nodename

write (1,’ (“Enter login/passwd: _”)')

read (1,’(A32)’) login

WRITE (1,’ (“Enter source name: _")’)

READ (1,’ (A64)’) source_ name

WRITE (1,’ (“Enter target name: ")’)

READ (1,’ (A64)’) target name

options = FIXED OPT + QUIET OPT + REPLACE OPT

rsize = 80

fsize = 0

CALL DscopyBuild (command, source name, ' ', ' ', target name,
+ login, nodename, options, rsize, fsize)

CALL Dscopy (command, result)

WRITE (1,’ (“Total errors: ",I4)’) result(l)
WRITE (1,’ (“Error code: _”,I4)’') result(2)
STOP

END

4-34 Network File Transfer

Network Interprocess Communication

Overview

Network Interprocess Communication (NetIPC) is an NS Common Service that enables processes
on the same or different NS-ARPA/1000 nodes to communicate using a series of programmatic
calls.

The form of interprocess communication offered by NetIPC is more flexible than that provided by
PTOP. PTOP is described in the DS/1000-1V Compatible Services Reference Manual. Because the
relationship between NetIPC processes is peer-to-peer rather than master-to-slave, NetIPC
processes are more independent than PTOP processes where the “master” process is in control of
communication. NetIPC and PTOP are compared in the DS/1000-1V Compatible Services
Reference Manual.

Processes that use NetIPC calls gain access to the communication services provided by the
network protocols utilized by NS-ARPA/1000. NetIPC does not encompass a protocol of its own,
but acts as a generic interface to the protocols underlying all of the NS-ARPA/1000 application
services.

Network interprocess communication between an HP 1000 and other types of HP computers is
also available with the NetIPC service. A NetIPC program on an HP 1000 is able to communicate
with a peer NetIPC program on an HP 9000 computer, HP 3000 computer, or PC. This
functionality between two processes on two different computer systems systems is called
cross-system NetIPC. Information about cross-system NetIPC is explained in the subsection,
“Cross-System NetIPC,” later in this section.

The “Porting NetIPC Programs” appendix of this manual describes programming considerations
when porting HP 1000 NetIPC programs to run under HP 9000 and vice versa.

The remainder of this NetIPC section is arranged as follows:

e Provides conceptual information about network interprocess communication—sockets and
connections.

e Explains some of the common parameters used in the NetIPC calls.

e Summarizes cross-system NetIPC considerations between HP 1000 and other types of HP
computers.

e Mentions ways to schedule a remote process.

e Explains the NS-ARPA/1000 NetIPC calls.

Network Interprocess Communication 5-1

Sockets

NetIPC processes communicate with each other by means of sockets. Processes make use of
sockets via the NetIPC calls to establish connections and exchange data. The Transport Layer’s
Transmission Control Protocol (TCP) regulates the transmission of data to and from sockets.
Although data must pass through the control of lower-level protocols and, if necessary, through
intervening nodes, these details are transparent to NetIPC processes when they send and receive
data. A brief description of the NS-ARPA/1000 network architecture is provided in the
Introduction to this manual. For more detailed information, refer to the NS-ARPA/1000
Generation and Initialization Manual.

Connections

Before a connection can be established between two NetIPC processes, each process must create a
call socket. A call socket is roughly analogous to a telephone handset with multiple buttons or
extensions. Call sockets are used to create and connect virtual circuit (V'C) sockets. When two VC
sockets are connected, they become the endpoints of a connection called a virtual circuit, or a
virtual circuit connection.

While a call socket is analogous to a telephone with multiple extensions, a VC socket is analogous
to one of the extensions on that telephone. Figure 5-1 is an illustration of this telephone analogy.

CALL SOCKET CALL SOCKET

0
O

WM v (BB

SOCKETS

VIRTUAL CIRCUIT

Figure 5-1. Telephone Analogy

Virtual circuits are the basis for interprocess communication. Once a virtual circuit is established,
the two processes that created it may use it to exchange data. Only VC sockets can be used to pass
data between processes; data cannot be passed through call sockets. A virtual circuit has two major
properties:

e It is a dedicated link, accessible only to the two processes that established the connection.

e [t provides reliable service, guaranteeing that data will not be corrupted, lost, duplicated or
received out of order.

5-2 Network Interprocess Communication

Naming, Socket Registry, and Path Reports

When a NetIPC process initiates a connection to a peer process, it must reference a call socket
that was created by that peer process. To gain access to another process’s call socket, a NetIPC
process must reference the socket’s name.

NetIPC processes may assign ASCII-coded names to their call sockets. Each NS-ARPA/1000 node
has a socket registry that contains a listing of all the named call sockets that reside at that node.
Pursuing the telephone analogy begun earlier, the socket registry could be compared to a
telephone directory: a call socket name is inserted in the local socket registry in much the same
way as a person’s name is placed in a local telephone directory.

NetIPC processes reference call sockets created by other processes by passing a socket name and
the corresponding node name to the socket registry software. The socket registry determines
which socket is associated with the name and formats the address information pertaining to that
socket into a path report which it returns to the inquiring process. When a path report is returned
to a process, it tells the process how it can send messages to the associated socket.

Using the socket registry to gain access to another process’s call socket is similar to using directory
assistance to find a person’s telephone number because a path report, like a telephone number, is
an address that can be used to direct a call to a particular destination.

Descriptors

NetIPC processes reference call sockets, VC sockets and path reports with descriptors. Descriptors
are returned to processes when certain NetIPC calls are invoked. An explanation of these
descriptors and the NetIPC call, or calls, that are used to obtain them follows.

® Call Socket Descriptor. A call socket descriptor refers to a call socket. A process obtains a call
socket descriptor by invoking IPCCreate (to create a call socket) or IPCGet (to get a call
socket descriptor given away by another process). When a call socket descriptor is obtained
with either one of these calls, the call socket it refers to is said to be owned by the calling
process.

® Path Report Descriptor. A path report descriptor refers to a path report. The path report
contains addressing information that is used by the calling process to direct requests to a
certain call socket at a certain node. A process obtains a path report descriptor by invoking
either IPCLookUp (to look up the name of a call socket in a specific socket registry),
IPCGet (to obtain a path report descriptor given away by another process), or IPCDest (to
create a path report descriptor).

e VC Socket Descriptor. A VC socket descriptor refers to a VC socket. A VC socket is the
endpoint of a virtual circuit connection between two processes. A VC socket descriptor is
returned by IPCRecvCn and IPCConnect after an initial dialogue takes place over a
connection formed by call sockets. A process can also obtain a VC socket descriptor given
away by another process by invoking IPCGet.

Network Interprocess Communication 5-3

Table 5-1. Descriptor Summary

Returned as

Descriptor Type Parameter Name Description Output From
call socket descriptor | calldesc Refers to a call socket. A call socket | IPCCREATE
is used to build a VC socket. IPCGET
path report descriptor | pathdesc Refers to a path report. A path report | IPCLOOKUP

contains addressing information that | IPCGET
is used to direct requests to a certain | IPCDEST
call socket at a certain node.

VC socket descriptor | vedesc Refers to a VC socket. A VC socket | IPCCONNECT
is the endpoint of a virtual circuit IPCRECVCN
connection between two processes. | IPCGET

Establishing a Connection

The steps needed to establish a virtual circuit connection are described in the following examples.
Although only two processes are shown, this is not meant to imply that communication cannot
exist between more than two processes. Either or both of the processes shown can establish virtual
circuit connections with other processes. Secondary or auxiliary connections can also be set up
between the same two processes.

The following paragraphs are a call-by-call explanation of how a virtual circuit connection is built.
The telephone analogy that was used to explain call sockets, VC sockets, and virtual circuits is
continued as each call is compared to a certain aspect of the telephone system.

Usually the two processes are executing at the same time or one process starts executing first and
then schedules the other process. NetIPC itself does not provide a call to schedule a peer process.
However, there are other services that allow you to schedule a process at an NS-ARPA/1000 node.
For more information refer to “Process Scheduling” later in this section.

Creating a Call Socket

Interprocess communication is initiated when Process A and Process B each create a call socket by
invoking the NetIPC call IPCCreate. This is illustrated in Figure 5-2 below. As explained
previously, a call socket is roughly analogous to a telephone with multiple extensions (see

Figure 5-1). IPCCreate returns a call socket descriptor in its calldesc parameter that refers to
the call socket, or “telephone,” that was created. This call socket descriptor is used in subsequent
NetIPC calls.

5-4 Network Interprocess Communication

PROCESS A PROCESS B

Call Call
Socket Socket

Descriptor Descriptor

Figure 5-2. IPCCreate (Processes A and B)

Naming a Call Socket

Process B names its call socket by calling IPCName. This is illustrated in Figure 5-3 below. The
name assigned by Process B is placed in the socket registry at the node on which Process B is
running. The name Process B assigns to its call socket must also be known to Process A because
Process A must reference it later in its IPCLookUp call. The name Process B assigns to its call
socket must also be unique to its node. Although call sockets do not have to be named, a process
cannot gain access to another process’s call socket if the call socket is not named. The socket must
be named and be in the socket registry at Process B’s node when Process A calls IPCLookUp.

PROCESS A PROCESS B

Call Call

Socket
Descriptor

Socket
Descriptor

SOCKET REGISTRY

“NAME"”

Figure 5-3. IPCName (Process B)

An alternative to using IPCName and IPCLookUp to name a socket and then obtain its
destination descriptor is available through the use of the IPCDest call. IPCDest enables you to
identify the remote socket by its TCP port address. Refer to the description of IPCDest later in
this section for more information.

Network Interprocess Communication 5-5

Looking Up a Call Socket Name

Process A must know the name assigned to Process B’s call socket. It calls IPCLookUp to “look
up” the name of the call socket in the socket registry at the node where Process B resides.
IPCLookUp returns a path report descriptor in its pathdesc parameter. The path report
described indicates the location of Process B’s call socket. This is illustrated in Figure 5-4 below.

Compared to the telephone system, IPCLookUp is similar to directory assistance: Process A calls
the “operator” (IPCLookUp), and gives him/her a “city” (1ocation parameter) and a “name”
(socketname parameter). Using the “city,” the operator looks for the name in the proper
“telephone directory” (socket registry). Once the name is found, the operator returns a
“telephone number” (pathdesc parameter) to the caller.

PROCESS A PROCESS B

Call
Socket

Call
Socket

Descriptor Descriptor

SOCKET REGISTRY

“NAME"”

Path
Report
Descriptor

Figure 5-4. IPCLookUp (Process A)

You can also use IPCDest to obtain a path report descriptor for a call socket with a particular
protocol address. A call socket is created by using the IPCCreate call with the PROTOCOL
ADDRESS option.

Requesting a Connection

Process A specifies the path report descriptor returned by IPCLookUp and the call socket
descriptor returned by IPCCreate inits IPCConnect call. With these two parameters,
IPCConnect requests a virtual circuit connection between Process A and Process B.
IPCConnect returns a VC socket descriptor in its vedesc parameter that refers to the VC socket
endpoint of the connection at Process A. This is illustrated in Figure 5-5 below.

IPCConnect is a non-blocking call; it does not suspend the execution of the calling process.
Because of this, IPCConnect could be compared to dialing a phone, but not waiting for an

answer. (The differences between blocking and non-blocking calls are explained in detail in

“Asynchronous and Synchronous Socket Modes” later in this section.)

5-6 Network Interprocess Communication

PROCESS A PROCESS B

Call
Socket
Descriptor

Call

Socket
Descriptor

SOCKET REGISTRY

“NAME"”

Path
Report
Descriptor

vC
Socket
Descriptor

Figure 5-5. IPCConnect (Process A)

Receiving a Connection Request

Using the call socket descriptor returned by its IPCCreate call, Process B calls IPCRecvCn to
receive any connection requests. In this example, Process B will receive a connection request from
Process A. (Process A “dialed its telephone” to call Process B when it called IPCConnect.)
IPCRecvCn returns a VC socket descriptor in its vedesc parameter. This VC socket is the
endpoint of the virtual circuit at Process B. This is illustrated in Figure 5-6. The connection will
not be fully established until Process A calls IPCRecv. Compared to the telephone system,
IPCRecvCn is similar to “hearing the telephone ring and answering it.”

Network Interprocess Communication 5-7

PROCESS A PROCESS B

Call Call

Socket
Descriptor

Socket
Descriptor

SOCKET REGISTRY

“NAME"”

Path
Report
Descriptor

vC
Socket
Descriptor

vC
Socket
Descriptor

Figure 5-6. IPCRecvCn (Process B)

Checking the Status of a Connection

Process A calls IPCRecv using the VC socket descriptor returned by its IPCConnect call.
IPCRecv returns the status of the connection (successful/unsuccessful) initiated by IPCConnect.
If the status is successful, the connection has been established and Process A and Process B can
“converse” over the new virtual circuit. This is illustrated in Figure 5-7.

Compared to the telephone system, IPCRecv is similar to “listening to hear if the phone was
answered.” (Since IPCConnect was compared to “dialing a phone, but not waiting for an
answer,” calling IPCRecv could be described as completing the connection request initiated by
IPCConnect.)

IPCRecv can also be used to receive data. This function is discussed in the IPCRecv call
discussion later in this section.

5-8 Network Interprocess Communication

PROCESS A PROCESS B

Call Call

Socket

Socket

Descriptor Descriptor

SOCKET REGISTRY

k////// AR
Path

Report
Descriptor

vC
Socket
Descriptor

vC
Socket
Descriptor

\ VIRTUAL CIRCUIT CONNECTION {

Figure 5-7. IPCRecv (Process A)

Summary of Calls Used in Connection Establishment

Figure 5-8 illustrates the sequence of NetIPC calls that is used to establish a virtual circuit
connection. This figure summarizes the information presented in Figure 5-2 through Figure 5-7.

PROCESS A PROCESS B
IPCCreate () IPCCreate ()
IPCName ()
IPCLookUp ()
IPCConnect ()
IPCRecvCn ()
IPCRecv ()
1. Create call socket 1. Create call socket
2. “Look up” name 2. Name call socket
3. Request connection 3. Receive connection
4. Check status of request

connection

Figure 5-8. Establishing a Connection with IPCLookUp

Network Interprocess Communication 5-9

Figure 5-9 summarizes a different way to establish a virtual circuit connection using IPCDest.

PROCESS A PROCESS B

IPCCreate () IPCCreate ()

IPCDest ()

IPCConnect ()

same as
Figure 5-8
IPCRecvCn ()

IPCRecvVv ()
1. Create call socket 1. Create call socket
2. IPCDest to well-known addr w/ well known addr
3. Request connection 2. Receive connection
4. Check status of connection request

Figure 5-9. Establishing a Connection with IPCDest

Steps 3 and 4 are the same for Process A in both figures. IPCLookUp and IPCName specify a
node name whereas IPCDest specifies a well-known address (integer). Note that the advantage
of using IPCLookUp is that names might be easier to remember and use. With IPCDest, the
address must be unique and other processes must cooperate and not use that same address.

Sending and Receiving Data Over a Connection

Once a virtual circuit connection is established, both processes can send and receive data using the
NetIPC calls IPCSend and IPCRecv. IPCSend is used to send data on an established
connection. Invoking IPCSend is analogous to “speaking” over a telephone connection.
IPCRecv is used to receive data on an established connection. The use of IPCRecv is similar to
“listening” at your telephone handset. (Note that IPCRecv has a dual function: to establish a
virtual circuit connection as well as to receive data on a previously established connection.)

Shutting Down a Connection

The NetIPC call IPCShutDown releases a descriptor and any resources associated with it.
IPCshutDown can be called to release a call socket descriptor, a path report descriptor or a VC
socket descriptor. How IPCShutDown functions depends on which type of descriptor is
referenced. Refer to the discussion of IPCShutDown later in this section for more information
on releasing call socket descriptors and path report descriptors.

Before terminating, a process should close its virtual circuit connections by calling ITPCShutDown
to release its VC socket descriptors. Because IPCShutDown takes effect very quickly, any data
that is in transit on the connection, including any data that has already been queued on the
destination VC socket, may be destroyed before its intended recipient is able to receive it. As a
result, the processes that share a connection must cooperate to ensure that no data is lost. In
order to release a connection without losing data, two processes can take the following steps:

5-10 Network Interprocess Communication

e Process A sends a “last message” to Process B via an IPCSend call. This message contains
data that will be recognized by Process B as a termination request. Process A then calls
IPCRecv to wait for Process B’s “last message.”

e Process B calls IPCRecv to receive Process A's “last message” and then sends its own “last
message” to Process A via IPCSend. Process B’s message contains data that will be
recognized by Process A as a confirmation of its termination request. Process B then calls
IPCRecv to wait for an error indicating that Process A has closed the connection.

e Process A receives Process B’s “last message” via a call to IPCRecv and calls IPCShutDown
to release its VC socket descriptor and close the connection.

e Process B’s IPCRecv call receives a “remote aborted the connection” error (error code 64).
It then calls IPCShutDown to release its own VC socket descriptor.

Timing and Timeouts

When setting up and using a virtual circuit connection, timing is critical at several points:

e When a process calls IPCLookUp to “look up” the name of a call socket in the socket registry
of a remote node.

e When a process calls IPCRecvCn to receive a connection request from another process.

e When a process first calls an IPCRecv after an IPCConnect (to check the status of a
connection).

e When a process sends and receives data with IPCSend and IPCRecv.

When a process attempts to look up a socket name in the appropriate socket registry, the name
must be there or a “name not found” error (error code 37) will be returned to the calling process.
When two processes are running concurrently, it may be difficult to ensure that a socket name is
placed in the socket registry prior to being “looked up” by another process. This problem is
referred to as a race condition because the two processes are “racing” to see which one will access
the socket registry first. Several ways to avoid this race situation are outlined in the discussion of
IPCLookUp later in this section.

If the NetIPC calls IPCRecvCn, IPCSend and IPCRecv are used synchronously, it may be
necessary to alter the synchronous timeout value by calling IPCControl. (The default
synchronous timeout is 60 seconds.) The synchronous timeout determines:

e How long IPCRecvCn will suspend the calling program while waiting for a connection
request.

e How long IPCSend will suspend the calling program if it cannot immediately obtain the
buffer space needed to accommodate its data.

e How long IPCRecv will suspend the calling program if its request for data cannot be satisfied
or if the referenced connection cannot be established.

For more information on synchronous I/O, refer to “Synchronous and Asynchronous Socket
Modes” later in this section.

Network Interprocess Communication 5-11

Additional NetIPC Calls

Once a virtual circuit is established between processes, descriptors can be given away, names can
be erased, and other functions can be performed. The following NetIPC calls are provided in
addition to those described in the previous paragraphs to enable you to perform these functions.
A brief introduction to each call and its use follows. (A complete description of these and all of
the NetIPC calls is provided in the following pages.)

e TIpCControl. Performs special operations on sockets such as enabling synchronous or
asynchronous mode, changing synchronous timeout values, and setting read and write
threshold values.

e TIpCDest. Returns a path report descriptor that the calling process can use to establish a
connection to another process. Using this call is an alternative to naming the call socket with
IPCName and acquiring a path report descriptor with IPCLookUp.

e 1pCGet. The companion call to IPCGive. Receives a descriptor given away by a process
that has called IPCGive. This call is similar to IPCLookUp because it enables your process
to acquire a descriptor that can be used in subsequent NetIPC calls.

e 1pCGive. The companion call to IPCGet. Releases ownership of a descriptor to NetIPC so
that it can be acquired by another process via a call to IPCGet.

e IPCNamErase. Does the reverse of IPCName: it removes a name associated with a socket
or path report descriptor from the socket registry. Only the owner of a descriptor can remove
its name.

e 1pCSelect. Allows a process to detect and/or wait for the occurrence of any of several
events across multiple sockets. IPCSelect can report: (1) whether the socket has any data
queued to it; (2) whether the socket can accommodate any new data that might be sent out
through it; and (3) whether the socket has some exceptional condition associated with it.
Compared to the telephone system, IPCSelect allows you to perform complex
“switchboard” operations.

5-12 Network Interprocess Communication

Summary of NetlPC Calls

The following table summarizes the NetIPC calls described in this section.

Table 5-2. NetIPC Calls

Call Description

IPCCONNECT Requests a virtual circuit to another program and returns a VC socket descriptor
which identifies a VC socket endpoint at the calling program.

IPCCONTROL Performs special operations on sockets such as enabling synchronous and
asynchronous modes, changing the synchronous timeouts, and setting read and
write thresholds.

IPCCREATE Creates a call socket for the calling program.

IPCDEST Returns a path report descriptor that the calling process can use to establish a
connection to another process.

IPCGET Receives a descriptor given away by another program.

IPCGIVE Releases ownership of a descriptor to NetIPC so that the descriptor can be
acquired by another program via a call to IpPCGet.

IPCLOOKUP Searches the socket registry for a socket name and returns a path report
descriptor that indicates how to get to the destination call socket.

IPCNAME Associates a name with a call socket descriptor or path report descriptor and
places it in the local node’s socket registry.

IPCNAMERASE | Removes a name associated with a call socket descriptor or path report
descriptor from the socket registry.

IPCRECV Establishes a virtual circuit, or receives data on a previously established
connection.

IPCRECVCN Receives a connection request from another program and returns a VC socket
descriptor that describes a VC socket endpoint at the calling program.

IPCSELECT Enables a program to detect and/or wait for the occurrence of any of several
events across multiple call or VC sockets.

IPCSEND Sends data to another program on a virtual circuit.

IPCSHUTDOWN | Releases a descriptor and any resources associated with it.

Network Interprocess Communication 5-13

Synchronous and Asynchronous Socket Modes

When a send operation is performed on a socket, data is moved out of a process into an outbound
transmission buffer. Similarly, when a receive operation is performed on a socket, data is moved
from an inbound transmission buffer into a process. Sometimes a send or receive request cannot
be immediately satisfied. In the case of IPCSend, an empty transmission buffer may not be
available; an IPCRecv request may not be satisfiable because data-filled transmission buffers are
not queued on the referenced socket. When either of these situations occur, NetIPC must decide
whether to fail the request or suspend the process until the request can be satisfied. This decision
is based upon whether the socket being manipulated is in synchronous or asynchronous mode.

Sockets are automatically placed in synchronous mode when they are created. When a socket is in
synchronous mode, send and receive requests that reference it cause the calling process to be
suspended if the requests cannot be immediately satisfied. A process that has been suspended will
remain suspended until the request is satisfied, a synchronous timeout occurs, or an error is
detected. Each synchronous socket has a timer associated with it that can be modified with an
IPCControl call. This timer determines how long a NetIPC call will block the socket while
waiting for its request to be satisfied. A NetIPC call will not be able to block forever unless the
synchronous timeout value is set to zero with a call to IPCControl.

Three NetIPC calls, IPCSend, IPCRecv and IPCRecvCn, support asynchronous as well as
synchronous I/O. In addition, IPCConnect is by definition an asynchronous call. (The
remaining NetIPC calls support only synchronous I/0.) Sockets can be placed in asynchronous
mode by calling IPCControl and specifying request code 1 in the requests parameter. Send
and receive requests directed against a socket in this mode do not cause the calling process to be
suspended if the requests cannot be immediately satisfied. Instead, a “would block” error (error
code 56) is returned and the process is free to perform other tasks before retrying the request.

Read and Write Thresholds

For efficiency, a process using asynchronous sockets must be able to determine whether a VC
socket can satisfy an IPCSend or IPCRecv call before the request is issued. The IPCSelect call
addresses this problem by providing socket status information. Included in this information is
whether or not:

e A VCsocket is readable (it can satisfy an IPCRecv call).
e A VCsocket is writeable (it can satisfy an IPCSend call).

IPCRecv determines whether or not a VC socket is readable by examining the socket’s read
threshold. A VC socket is considered readable if it can immediately satisfy an IPCRecv request
for a number of bytes equal to or greater than its read threshold. The read threshold is used by
IPCSelect to check if there are at least that many bytes queued on the socket ready for reading.

Similarly, IPCSend determines whether or not a VC socket is writeable by examining the socket’s
write threshold. A VC socket is considered writeable if it can immediately satisfy an IPCSend
request for a number of bytes equal to or greater than its write threshold. The write threshold is
used by IPCSelect to check if there are at least that many bytes in the system ready to be used as
a buffer space for writing to a particular socket.

5-14 Network Interprocess Communication

IPCSelect will not return accurate status information unless a socket’s read and write thresholds
are set to the correct number of bytes. The thresholds default is one byte each. (A VC socket’s
read and write thresholds can be set by calling IPCControl. Refer to the discussion of this call
for more information.) The number of bytes that can be sent or received on a socket should
determine the correct read and write threshold settings. As a general rule, set a socket’s read
threshold to the same number of bytes as the length of the data you expect to receive on that socket.
Similarly, set a socket’s write threshold to the same number of bytes you expect to send on that socket.
Consider the following example: Process B will always issue IPCSend calls with 64 bytes of data
on VC socket X. Therefore, socket X’s write threshold should also be 64 bytes. Similarly, if
Process B expects to issue 64-byte IPCRecv requests on socket X, socket X’s read threshold
should be set to 64 bytes as well.

If you expect to receive variable length data on a particular VC socket, the socket’s read threshold
should be set to the length of the shortest amount of data expected. If you expect to send variable
length data on a particular VC socket, the socket’s write threshold should be set to the length of
the longest amount of data you expect to send.

Note The read and write thresholds are used exclusively by the IPCSelect call.
They have no effect on other NetIPC calls.

For more information on using sockets in asynchronous mode, refer to the discussions of
IPCSelect, IPCControl, IPCSend and IPCRecv.

Network Interprocess Communication 5-15

Stream Mode

All data transfers between NetIPC processes are in stream mode. Stream mode adheres to the
Transport Layer’s Transmission Control Protocol (TCP). In stream mode, data is transmitted in a
stream of bytes; there are no end-of-message or end-of-data markers. This means that the data
received by an individual IPCRecv call may not be equivalent to data sent by an individual
IPCSend call. In fact, the data received may contain part of the data or multiple sets of data sent
by multiple IPCSend calls. Although no attempt is made to preserve boundaries between data
sent at different times, the data received will always be in the correct order (in the order that the
data was sent).

You may specify the maximum number of bytes that you are willing to receive through a parameter
of the IPCRecv call. When the call completes, this parameter will contain the number of bytes
actually received. The amount of data received will never be more than the amount that was
requested, but it may be less. Whether or not an IPCRecv call will receive less data than it
requested is determined by the DATA_WAIT bit of the f1ags parameter. If the DATA_ WAIT
bit is set, IPCRecv will never receive less than the requested amount. If the DATA_ WAIT bit is
not set, IPCRecv may receive less data than was requested.

If an IPCRecv call requests more data than is queued on a VC socket, one of the following
situations will result:

e [f the VC socket is in synchronous mode, the calling process will suspend until enough data is
queued to satisfy the IPCRecv request. If enough data does not arrive within the
synchronous timeout period to satisfy the request, a “timeout” error (error code 59) will be
returned.

e If the VC socket is in asynchronous mode, a “would block” error (error code 56) will be
returned.

For more information on synchronous and asynchronous I/O, refer to the previous discussion
titled “Synchronous and Asynchronous Socket Modes” and to the discussions of IPCSend and
IPCRecv later in this section.

5-16 Network Interprocess Communication

NetIPC Common Parameters

The flags, opt, data, result, socketname, and nodename parameters are common to
many NetIPC calls. The flags, opt, and result parameters are also common to the Remote
Process Management (RPM) calls. RPM calls are explained in the “Remote Process
Management” section later in this manual. These calls can be used to schedule remote NetIPC
programs.

The opt parameter provides functionality for NetIPC and RPM calls; opt usually has data
associated with it. The flags parameter enables or disables certain functions for NetIPC calls.
The result parameter returns error codes for NetIPC calls. The socketname and nodename
parameters identify sockets and nodes, respectively. The following descriptions should help you
better understand the meaning, use, and structure of each of these parameters.

Flags Parameter

The flags parameter is a bit map of 32 special request bits. By setting bits in the f1ags
parameter, you can invoke various services in IPCConnect, IPCRecv, IPCRecvCn, and
IPCSend calls.

The NetIPC calls IPCControl, IPCCreate, IPCDest, IPCGet, IPCGive, IPCLookUp, and
IPCShutDown also include a f1ags parameter, but in these calls this parameter is reserved for
future use. However, the f1ags parameter must be initialized to zero before it is used in these
calls. The parameter must also be cleared after it is used in these calls. This precaution should be
taken because NetIPC calls that do not use the f1ags parameter on input may return non-zero
values in f1ags on output.

NetIPC and RPM calls assume that the bits in the f1ags parameter are numbered from left to
right with the most significant bit being bit one, and the least significant bit being bit 32.

MSB

123456 ... 32 Pascal, NetIPC, and RPM
MSB

31 30 29 28 ... 0 FORTRAN

The IPCSelect bit map parameters are also numbered from left to right as in the NetIPC
flags parameter. Refer to “IPCSelect Call Bit Map Parameters” later in this section.

The following paragraphs explain how the f1ags parameter is declared and manipulated in
Pascal and FORTRAN.

Network Interprocess Communication 5-17

Pascal Programming Language

In Pascal/1000, the f1ags parameter is represented as follows:
TYPE
flags type = packed array [1..32] of boolean;
VAR
flags : flags type;

flags [1] refers to the high order bit in the boolean array; £lags [32] refers to the low
order bit. To set a bit in the array, assign the value TRUE to the desired bit. For example,
flags[22] : =TRUE would set bit 22 of the f1ags array. A clear bit would be assigned the value
FALSE. If you do not want to set any of the bits in the f1ags array, but you want to be certain
that all of the bits are clear, you may make flags type INTEGER and assign it the value zero.

FORTRAN 77 Programming Language

In FORTRAN 77, the f1ags parameter must be declared as a 32-bit integer (INTEGER*4). The
simplest way to set a bit in this parameter is to use the FORTRAN 77 library function

ibset (a, b). The flags parameter is passed in the first argument (a) and the bit position you
want to set is passed in the second argument (b). Multiple bits can be set by repeating the ibset
function.

In the following FORTRAN 77 example, flags bit 22 is set in the f1ags parameter:

INTEGER*4 flags
INTEGER*4 ibset

C The flags value is subtracted from 32 so that the proper
c bit is set. This maps ibset’s bit numbering convention into
c NetIPC's.
c Set Bit 10 in FORTRAN, which is Bit 22 in NetIPC
flags = ibset (flags, (32-22))
MSB
123456 ... 22. .. 32 NetIPC flags
MSB
31 30 29 28 ... 10 9876 5 43210 FORTRAN

5-18 Network Interprocess Communication

Opt Parameter

The opt parameter allows you to request optional services when invoking certain NetIPC and
RPM calls. It enables calls that include the opt parameter to accept an arbitrary number of
arguments that are either protocol or operating system specific. To help you distinguish between a
flag parameter and an opt parameter, remember that the opt parameter is an array and usually
has data associated with it.

You can invoke services from the opt parameter in the NetIPC calls, IPCConnect, IPCCreate,
IPCRecv, IPCRecvCn, and IPCSend.

The NetIPC calls, IPCDest and IPCShutDown, also include an opt parameter, but in these
calls this parameter is reserved for future use. However, the opt parameter must be initialized to
zero before it is used in these calls.

Because the opt parameter is an array with a complex structure, NetIPC provides a special set of
calls that allow your processes to view the parameter as a packed array of bytes (Pascal) or an
array of words (FORTRAN). Table 5-3 summarizes these calls. A complete description of each
call is provided in “Special NetIPC Calls” at the end of this section.

Table 5-3. Special NetlPC Calls

Call Description
ADDOPT Adds an argument and its associated data to an opt parameter.
ADROF Obtains the byte address of any byte within a data object.
INITOPT Initializes an opt parameter so that arguments can be added.
READOPT Obtains the option code and argument data associated with an
opt parameter argument.

Before you can invoke a NetIPC or RPM call that includes an opt parameter, you must prepare
the parameter by using the following opt parameter calls:

e First, InitOpt must be called to initialize the opt parameter. This call allows you to specify
how many arguments will be placed in this parameter.

e Next, AddOpt must be called to add an argument and its associated data to the opt
parameter. An AddOpt call can add only one argument at a time, so you must call it multiple
times if you want to add multiple arguments to the opt parameter.

The two other opt parameter calls are AdrOf and ReadOpt. The ReadOpt call allows you to
obtain option code and argument data associated with a certain opt parameter. The AdrOf call
enables you to obtain a byte address that can be placed in the byte address field of a data vector.

The following diagrams are provided to illustrate the general form of the opt parameter after it
has been initialized with the special NetIPC call InitOpt. In Figure 5-10, the following portions
of the opt parameter are:

e OPTLENGTH represents the combined length of the OPTARGUMENTS and DATA portions of
the opt parameter:

OPTLENGTH = 8 * OPTNUMARGUMENTS + DATA

Network Interprocess Communication 5-19

OPTLENGTH takes up two bytes in the opt parameter.

e OPTNUMARGUMENTS represents the number of arguments or entries placed in the parameter.
OPTNUMARGUMENTS takes up two bytes.

e OPTARGUMENTS is an area containing the arguments themselves; each argument is 8 bytes in
length. Figure 5-11 illustrates its structure.

e DATA is where the data associated with the arguments is stored. The length of DATA is

variable.
Byte
0
OPTLENGTH
1
2
OPTNUMARGUMENTS
3
4
OPTARGUMENTS
n
n + 1
DATA
V4

Figure 5-10. Opt Parameter Structure

The length (in bytes) of the opt parameter, including any data associated with it, can be
determined with the following formula. This formula can also be used to determine the opt
parameter length before coding your application.

total length of opt := 4 + 8 * OPTNUMARGUMENTS + DATA;

OPTNUMARGUMENTS is the number of arguments that will be placed in the parameter and DATA is
the length of the data associated with all of the arguments. The value of total length of opt
is the minimum size needed for the opt parameter. For most NetIPC programs, an average opt
parameter is 60 to 100 bytes.

Figure 5-11 illustrates the structure of an opt parameter argument, OPTARGUMENTS :
e OPTIONCODE is the option code associated with the argument being added.

e OFFSET is the number of bytes offset into the opt record where the data associated with an
argument is located.

e DATALENGTH is the length of the data associated with the argument.

This information is added to the opt parameter with the special NetIPC call Addopt. (An
example of adding an argument to the opt parameter is provided in the discussion of AddOpt
later in this section.)

5-20 Network Interprocess Communication

Byte

0

OPTIONCODE
2

OFFSET

3
4
5 DATALENGTH
6

<RESERVED>
7

Figure 5-11. OPTARGUMENTS Structure

Data Parameter

The data parameters present in IPCControl, IPCSend and IPCRecv may reference data
vectors or data buffers.

Unlike a data buffer, which is a structure containing actual data, a data vector is a structure that
can describe several data objects. The description of each object consists of a byte address and a
length. The byte address describes where the object is located and the length indicates how much
data the object contains. Any kind of data object (arrays, portions of arrays, records, simple
variables, etc.) can be described by a data vector.

When a data vector is used to identify data to be sent, it describes where the data is located. This
is referred to as a gathered write. When a data vector is used to identify data to be received, it
describes where the data is to be placed. This is referred to as a scattered read.

Using data vectors may be more efficient than using data buffers in certain circumstances. For
example, a process that sends data from several different buffers must call IPCSend several
times, or copy the data into a packing buffer prior to sending it, if its data parameter is a data
buffer. However, if its data parameter is a data vector, the process may describe all of the
buffers in the data parameter and transfer it using one IPCSend call.

Figure 5-12 is an example of a data vector and the data objects that it represents. The data vector
describes the characters “HERE IS THE DATA.”

Network Interprocess Communication 5-21

DATA VECTOR DATA OBJECTS

BYTE
16000 | ADDRESS Tzlzlz .
8 LENGTH
16000 16002 16004 16006
BYTE
16227 | ADDRESS x| T|H|E D|lY|vY
5 LENGTH
16222 16224 6226 16228
BYTE
17542 | ADDRESS sl slalcla 1.
4 LENGTH :
17540 17542 17544 17546

Figure 5-12. Vectored Data

Note Because neither Pascal/1000 or FORTRAN permit manipulation of byte
addresses, a special routine, AdrOf, is provided to allow you to construct data
vectors. AdrOf is described in “Special NetIPC Calls” at the end of this
section.

Because NetIPC uses 16-bit addressing, NETIPC (IPCSend, IPCRecvV,
IPCControl) cannot access data with 32-bit addressing. Therefore, data in EMA
(Extended Memory Area) cannot be accessed directly.

To access data in EMA, you should copy data from EMA to your local area, then
access it with the NetIPC call.

When a data parameter refers to a data vector, the length of the data parameter (usually called
dlen) refers to the length of the structure containing the vector. For example, if an IPCSend call
were to reference the data vector in Figure 5-12 above, its d1en parameter would be 12 bytes.
Each byte address and length totals 4 bytes; hence, each pointer (byte address) to a data object is 2
bytes long. There are three sets of byte addresses and lengths. Therefore, 4 * 3 = 12. Each
length in a data vector must be greater than or equal to zero.

5-22 Network Interprocess Communication

Type Coercion

A single data parameter can be used to represent either vectored or unvectored data in a
Pascal/1000 program if type coercion is performed. This is useful when both vectored and
unvectored data will be referenced. The following is an example of type coercion with a data
parameter named data buffer.

type vectored array = array [0..10] of data area
data_ area = record
location : intlse;
length : intle;
end;

type byte array

packed array [0..64] of byte;

data buffer = record
case boolean of
true : (data : byte array) ;
false : (vect : vectored array) ;
end;

In the above example, the vectored array type would be referenced by specifying
data_buffer.vect. The byte array type (for unvectored data) would be referenced by
specifying data_buffer.data.

Note Since the data location descriptors contain machine-specific information, code
using the vectored option may not be portable to other machines.

Result Parameter

Every NetIPC call has a result parameter. If an error occurs when a program uses a NetIPC
call, an error code is returned to this parameter. The NS-ARPA/1000 Error Message and Recovery
Manual lists and explains the NetIPC error codes.

Socketname Parameter

The NetIPC calls IPCName, IPCNamErase, IPCLookUp, IPCGive, IPCGet, and IPCDest
require the use of names to identify either sockets or nodes.

A socket name (the socketname parameter) may be a maximum of 16 characters long and may
consist of any ASCII character. Upper and lower case characters are not considered distinct. For
example, the socket names “john” and “JOHN” are equivalent. Be careful with trailing blanks
after a socket name; “john ” and “john” are not equivalent.

Network Interprocess Communication 5-23

Nodename Parameter

A node name (the nodename parameter) refers typically to a remote node and has a hierarchical
structure as follows:

node[.domain[.organization]]

The NS-ARPA node name syntax is described previously in “Node Names” in the “Introduction”
section of this manual.

Note The socket name and node name parameters must be represented as arrays of
ASCII characters in Pascal/1000 and an array of integers in FORTRAN. Do not
use the Pascal string type or the FORTRAN 77 character string type definitions
to describe these parameters.

5-24 Network Interprocess Communication

Cross-System NetIPC

Network interprocess communication between an HP 1000 and other types This section explains
the NetIPC calls that need to be considered for a cross-system application. Cross-system means
that two different types of computer systems are communicating with one another. Cross-system
NetIPC is supported between the HP 1000 and other HP computer systems (HP 9000, HP 3000,
and PC). The NetIPC programs running on these pairs of computer systems will be able to send
and receive data.

Note NetIPC on the HP 3000 refers to both MPE V and MPE XL versions unless
otherwise stated.

This section does not explain all the NetIPC calls on the other HP computers. For this
information, refer to the appropriate manual for that system.

Before reading this “Cross-System NetIPC” section, you must have a good understanding of the
NetIPC calls. Review the remaining sections on the calls before the reading this section. For an
example of programs that will communicate with similar programs included as samples with

HP 9000 or HP 3000, refer to the “Client-Server Program Examples” subsection later in this
section.

Many NetIPC calls on HP 1000, HP 9000, HP 3000, and the PC are different even if they have the
same name. To understand the details and differences of each call on another system, you must
read the corresponding NetIPC documentation for that system.

The “Porting NetIPC Programs” appendix in this manual describes programming considerations
when porting HP 1000 NetIPC programs to run under HP 9000 and vice versa. This appendix also
summarizes the differences among the NetIPC calls between HP 1000 and HP 9000. Porting
refers to the process of moving a set of programs from one type of computer system to another.
For example, if you have NetIPC programs currently executing on an HP 1000 system and you are
migrating to an HP 9000, you may want to port those programs to the HP 9000. When porting
programs, you will encounter programming language differences as well as NetIPC differences.
Refer to the language manuals for information on differences among the programming languages.

Local NetIPC Calls

Not all of the NetIPC calls affect cross-system NetIPC communication. There are two categories
of calls when considering cross-system NetIPC communication—local and remote. Calls made for
the local process do not directly affect the remote process. The local NetIPC calls are used to set
up or prepare the local node for interprocess communication with the remote node. That is, the
resulting impact of the local calls is only to the local node. There is no information or action that
affects the remote node. This is true whether or not the remote node is another HP 1000 or not.
Table 5-4 lists the NetIPC calls affecting the local process.

Network Interprocess Communication 5-25

Table 5-4. NetlPC Calls Affecting The Local Process

HP 1000

HP 9000

HP 3000

PC

Addopt

Adrof

Not implemented
Not implemented
InitOpt

Not implemented
IPCControl
IPCCreate

Not implemented
IPCGet
IPCGive
IPCName
IPCNamerase
IPCSelect

Not implemented
Not implemented

ReadOpt

addopt ()

Not implemented
Not implemented
Not implemented
initopt ()

Not implemented
ipccontrol ()
ipccreate()

Not implemented
Not implemented
Not implemented
ipcname ()
ipcnamerase ()
ipcselect ()
Not implemented
optoverhead ()

readopt ()

ADDOPT

Not implemented
Not implemented
Not implemented
INITOPT
IPCCHECK
IPCCONTROL
IPCCREATE
IPCERRMSG
IPCGET
IPCGIVE
IPCNAME
IPCNAMERASE
Not implemented
Not implemented
OPTOVERHEAD

READOPT

AddOpt

Not implemented
ConvertNetworkLong
ConvertNetworkShort
InitOpt

Not implemented
IPCControl
IPCCreate

Not implemented

Not implemented

Not implemented

Not implemented

Not implemented

Not implemented
IPCWait
OptOverhead

ReadOpt

(NetlPC-3000/V only)

The calls listed in Table 5-4 affect local processes only and will therefore have no adverse affects if
used in a program communicating with an unlike system (for example, an HP 3000 program
communicating with an HP 1000 program). However, keep in mind that the calls (even those of
the same name) differ from system type to system type. The following are some local call
differences to be aware of:

o Maximum number of sockets. The maximum number of socket descriptors owned by an
HP 3000 process at any given time is 64; on the HP 1000 the maximum is 32; on the HP 9000
the maximum is 60 (including file descriptors); on the PC the maximum is 21. This number
includes both call socket and virtual circuit socket descriptors.

e [PCControl parameters. The IPCControl call supports different set of request codes on
different system types. Refer to the NetIPC documentation for a particular system (this
manual is for the HP 1000 only) for a full description of the request codes available on that
system.

® Path report descriptors. On the HP 9000 and HP 3000, path report descriptors are called
destination descriptors. Both types of descriptors are used in the same way. They contain
addressing information that is used by a NetIPC process to direct requests to a certain call
socket at a certain node.

5-26 Network Interprocess Communication

® Manipulation of descriptors. The HP 9000 implementation of NetIPC allow you to manipulate

call socket and destination descriptors with the ITPCName and IPCNamerase calls. The

IPCName and IPCNamerase calls on the HP 1000 manipulate only call socket descriptors.
The HP 1000 also allows you to manipulate any socket descriptors (call socket, VC socket,

and path report descriptors) with the IPCGive and IPCGet calls. On the HP 3000,
IPCGIVE and IPCGET calls can be used to manipulate call socket and VC socket descriptors,
but cannot be used to manipulate destination descriptors.

and other types of HP computers. In addition, NetIPC calls with the same
names may return different error codes depending. Refer to the system’s

corresponding NetIPC manual for information to determine the differences and
for a list of error codes.

e Asynchronous I/O. The HP 9000 and HP 1000 NetIPC implementations utilize the
IPCSelect call to perform asynchronous I/O. The HP 3000 NetIPC implementation utilizes
the MPE intrinsics, TOWAIT and IODONTWAIT. PC NetIPC uses IPCWait.

e (Call sockets. On the PC, call sockets are called source sockets and call socket descriptors are
called source socket descriptors. Both sets of terms are used in the same way.

Note There are many additional differences between NetIPC calls for the HP 1000

Remote NetlPC Calls

Unlike local NetIPC calls, remote NetIPC calls affect the peer process at the remote node.
Table 5-5 lists the NetIPC calls that affect the remote process.

Table 5-5. NetIPC Calls Affecting the Remote Process

HP 1000 HP 9000 HP 3000 PC
IPCConnect ipcconnect IPCCONNECT IPCConnect
IPCDest ipcdest IPCDEST IPCDest
IPCLookUp ipclookup IPCLOOKUP Not implemented
IPCRecv ipcrecv IPCRECV IPCRecv
IPCRecvCn ipcrecven IPCRECVCN IPCRecvCn
IPCSend ipcsend IPCSEND IPCSend
IPCShutDown ipcshutdown IPCSHUTDOWN IPCShutDown

Network Interprocess Communication

5-27

HP 1000 to HP 9000 NetIPC

The NetIPC calls affecting cross-system communication with the remote process have the
following differences: different send and receive sizes, range of permitted TCP protocol addresses
for users, checksumming, and socket sharing. Table 5-6 lists the NetIPC calls affecting the remote
process and summarizes the cross-system considerations.

Table 5-6. Cross-System NetIPC Calls (HP 1000—HP 9000)

NetIPC Call Cross-System Considerations for HP 1000—HP 9000

IPCConnect Checksumming—When the ipcconnect () call is executed on the HP 9000 node,
then checksumming is always enabled for the HP 9000-to-HP 1000 connection.

Send and Receive sizes—The HP 1000 send and receive size range is 1 to 8,000
bytes. The HP 9000 send and receive size range is 1 to 32,767 bytes. Although the
ranges are different, cross-system communication is not affected. Just be sure to
specify a buffer size within the correct range for the respective system.

IPCCreate TCP Protocol Address—The HP 1000 and HP 9000 implementations of IPCCreate
IPCDest support different ranges of permitted TCP protocol addresses that can be specified
in the opt parameter. However, both implementations recommend that users
specify TCP addresses in the range of 30767 to 32767 decimal for cross-system
use. The TpCDest call uses the TCP protocol address specified in TPCCreate on
the remote process.

IPCLookup No differences that affect cross-system operations.

IPCRecv Receive size—The HP 1000 receive size range is 1 to 8,000 bytes. The HP 9000
receive size range is 1 to 32,767 bytes. Although the range sizes that can be
specified in the d1en parameter are different, cross-system communication is not
affected. Just be sure to specify a buffer size within the correct range for the
respective system.

IPCRecvCn Checksumming—When the ipcrecven () call is executed on the HP 9000 node,
checksumming is always enabled for the HP 9000-to-HP 1000 connection.

Send and Receive sizes—The HP 1000 send and receive size range is 1 to 8,000
bytes. The HP 9000 send and receive size range is 1 to 32,767 bytes. Although the
ranges are different, cross-system communication is not affected. Just be sure to
specify a buffer size within the correct range for the respective system.

IPCSend Send size—The HP 1000 send size range is 1 to 8,000 bytes. The HP 9000 send
size range is 1 to 32,767 bytes. Although the ranges are different, cross-system
communication is not affected. Just be sure to specify a buffer size within the
correct range for the respective system.

IPCShutDown |[Socket Shut Down—The shutdown procedure for both HP 1000 and HP 9000
processes is identical except for shared sockets on HP 9000.

Shared sockets are destroyed only when the descriptor being released is the sole
descriptor for that socket. Therefore, the HP 9000 process may take longer to close
the connection than expected.

5-28 Network Interprocess Communication

Note There are many additional differences between remote NetIPC calls for the
HP 9000 and HP 1000 systems. However, these differences should not affect
the local node only. Refer to the “Porting NetIPC Programs” appendix in this
manual for a summary of differences between HP 9000 and HP 1000 NetIPC
implementations.

HP 1000 to HP 3000 NetIPC

The NetIPC calls affecting cross-system communication with the remote process have the
following differences: different send and receive sizes, range of permitted TCP protocol addresses
for users, and checksumming. Table 5-7 lists the NetIPC calls affecting the remote process and
summarizes the cross-system considerations.

Table 5-7. Cross-System NetIPC Calls (HP 1000—HP 3000)

NetIPC Call Cross-System Considerations for HP 1000—HP 3000

IPCConnect Checksumming—TCP checksumming will be enabled for both sides of the
connection if it is enabled by either side. On both the HP 1000 and HP 3000,
checksumming can be enabled by setting bit 22 in the f1ags parameter. On the
HP 3000, this bit can be used to override the checksumming decision made during
the network transport configuration for this particular process.

Send and Receive sizes—The HP 1000 send and receive size range is 1 to 8,000
bytes. The HP 3000 send and receive size range is 1 to 30,000 bytes. Although the
ranges are different, you must specify a send size within the correct range for the
respective system; otherwise, an error will occur. For example, if the HP 3000 sends
16,000 bytes, the HP 1000 node can call IPCRecv twice, receiving 8000 bytes the
first time and the second 8000 bytes the second time. Two processes should
already understand how much and what kind of data they expect to send and
receive whether or not they are cross-system processes. Note that the default send
and receive sizes differ on the HP 1000 and HP 3000. On the HP 1000, the default
send and receive size is 100 bytes. On the HP 3000, the default send and receive
size is less than or equal to 1024 bytes.

IPCCreate TCP Protocol Address—The recommended range of TCP addresses for user
IPCDest applications is from 30767 to 32767 decimal (74057 to 77777 octal) for both the
HP 3000 and HP 1000. The TpCDest call uses the TCP protocol address specified
in IPCCreate on the remote process. However, on NS3000/XL Release 1.1 these
calls are not available to a non-privileged user.

IPCLookup No differences that affect cross-system operations.

IPCRecv Receive size (d1en parameter)—Range for the HP 3000 is 1 to 30,000 bytes. Range
for the HP 1000 is 1 to 8,000 bytes. Although the ranges are different, cross-system
communication is not affected. Just be sure to specify a buffer size within the
correct range for the respective system.

Network Interprocess Communication 5-29

NetIPC Call

Cross-System Considerations for HP 1000—HP 3000

Data wait flag—The HP 1000 IPCRecv call supports a “DATA_WAIT” flag. This flag,
when set, specifies that the call will not complete until the amount of data specified
by the d1en parameter has been received. This flag is not available on the

HP 3000, meaning that the call may complete before all the data is received.
However, the HP 3000 IPCRecv supports other flags such as the “more data” and
“destroy data” flags. Refer to the description of TPCRecv in the NetlPC3000 manual
for detailed information.

IPCRecv(Cn

Send and Receive sizes—The HP 1000 send and receive size range is 1 to 8,000
bytes. The HP 3000 send and receive size range is 1 to 30,000 bytes. Although the
ranges are different, you must specify a send size within the correct range for the
respective system; otherwise, an error will occur. For example, if the HP 3000 sends
16,000 bytes, the HP 1000 node can call IPCRecv twice, receiving 8000 bytes the
first time and the second 8000 bytes the second time. Two processes should
already understand how much and what kind of data they expect to send and
receive whether or not they are cross-system processes. Note that the default send
and receive sizes differ on the HP 1000 and HP 3000. On the HP 1000, the default
send and receive size is 100 bytes. On the HP 3000, the default send and receive
size is less than or equal to 1024 bytes.

IPCSend

Send size—The HP 1000 send size range is 1 to 8,000 bytes. The HP 3000 send
size range is 1 to 30,000 bytes. Although the ranges are different, cross-system
communication is not affected. Just be sure to specify a buffer size within the
correct range for the respective system.

Urgent Data—The HP 3000 supports an “urgent data” option in the opt parameter.
If this bit is set by the HP 3000 program, it will be ignored by the receiving process
on the HP 1000.

IPCShutDown

Socket Shut Down—The shutdown procedure for both HP 1000 and HP 3000
processes is the same, except that the graceful release flag is not available on
the HP 1000. Do not set the graceful release flag (f1ags 17) on the HP 3000.
Otherwise, the HP 1000 will not perform a normal shutdown. If the HP 3000 process
does set the graceful release flag, the HP 1000 TpPCRecv call will get a NetlPC error
68 (no more data) instead of a NetIPC error 64 (connection aborted by peer). The
HP 1000 process should handle the error 68 as if it were an error 64. After receiving
a NetIPC error 68, subsequent TPCRecv calls will get a NetIPC error 109 (remote
connection has already graceful released the socket), because there is no more
data available.

5-30 Network Interprocess Communication

HP 1000 to PC NetIPC

The NetIPC calls affecting cross-system communication with the remote process have the
following differences: different send and receive sizes, range of permitted TCP protocol addresses
for users, and checksumming. Table 5-8 lists the NetIPC calls affecting the remote process and
summarize the cross-system considerations.

Table 5-8. Cross-System NetIPC Calls (HP 1000—PC)

NetIlPC Call Cross-System Considerations for HP 1000—PC
IPCConnect Checksumming—With PC NetIPC, the TCP checksum option cannot be turned on.
But if the HP 1000 requires it, the TCP checksum is in effect on both sides of the
connection.

Send and Receive sizes—The HP 1000 send and receive size range is 1 to 8,000
bytes. The PC send and receive size range is 1 to 65,535 bytes. Although the
ranges are different, cross-system communication is not affected. Just be sure to
specify a buffer size within the correct range for the respective system; otherwise,
an error will occur. For example, if a PC sends a 60,000 byte buffer, the HP 1000
process may get all the data by posting seven IPCRecv functions of up to 8,000
bytes until all the data has been received.

IPCCreate TCP Protocol Address—The HP 1000 and PC implementations of IPCCreate
IPCDest support different ranges of permitted TCP protocol addresses that can be specified
in the opt parameter. However, both implementations recommend that users
specify TCP addresses in the range of 30767 to 32767 decimal for cross-system
use. The IpPCDest call uses the TCP protocol address specified in IPCCreate on
the remote process.

IPCRecv Receive size—The HP 1000 receive size range is 1 to 8,000 bytes. The HP 1000
enables you to specify the maximum receive size of the data buffer through the opt
array in the IpCConnect call. This determines what the maximum value for d1en
can be for any IpPCRecv call. PC NetIPC has no option array defined for
IPCConnect. This does not affect cross-system communication. The maximum
receive size of the data in the buffer on the HP 1000 will determine the receive size
buffer on the PC.

Data wait flag—The HP 1000 IpPCRecv call supports a “DATA_WAIT” flag. This flag,
when set, specifies that the call will not complete until the amount of data specified
by the d1en parameter has been received. This flag is not available on the PC,
meaning that the call may complete before all the data is received.

IPCRecvCn Checksumming—With PC NetIPC, the TCP checksum option cannot be turned on.
But if the HP 1000 requires it, the TCP checksum will be in effect on both sides of
the connection.

Send and Receive sizes—The HP 1000 send and receive size range is 1 to 8,000
bytes. The PC send and receive size range is 1 to 65,535 bytes. Although the
ranges are different, cross-system communication is not affected. Just be sure to
specify a buffer size within the correct range for the respective system. For
example, if a PC sends 16,000 bytes, the HP 1000 computer can call IPCRecv
twice, receiving 8,000 bytes the first time and the second 8,000 bytes the second
time.

IPCSend Send size—The HP 1000 send size range is 1 to 8,000 bytes. The HP 1000 enables
you to specify the maximum send size of the data buffer through the opt array in
the IPCConnect call. This determines what the maximum value for d1en can be
for any IpCSend call. PC NetIPC has no option array defined for IPCConnect. This
does not affect cross-system communication. The maximum send size of the data
in the buffer on the HP 1000 will determine the send size buffer on the PC.

Network Interprocess Communication 5-31

Loading NetIPC Programs

HP 1000 NetIPC programs should be compiled and linked as CDS programs. Refer to the RTE-A
Programmer’s Reference Manual and RTE-A Link Manual for more information on CDS programs.
After the program is linked, an RTE executable file (type 6) is ready to be scheduled.

Process Scheduling

NetIPC itself does not include a call to schedule a peer process. The method used to schedule a
remote NetIPC process depends on the types of systems involved. The following paragraphs
discuss these methods.

Remote HP 1000 NetIPC Process

There are at least six different ways (listed below) to schedule a remote HP 1000 NetIPC process
from another HP 1000 node. A remote HP 1000 NetIPC process must be ready to execute by
being an RTE type 6 file.

e [nternet Network Services Daemon (INETD). INETD can accept incoming connections for
user written NETIPC server programs and schedule a copy of the server program for each
connection. Refer to the INETD section in the NS-ARPA/1000 Generation and Initialization
Manual.

® Remote Process Management (RPM). The RPMCreate call programmatically schedules a
program. Refer to the section “Remote Process Management” later in this manual. RPM is
an NS Common Service.

® Program-to-Program communication (PTOP). The POPEN call programmatically schedules a
program. PTOP is a DS/1000-1V Compatible Service and is described in the DS/1000-1V
Compatible Services Reference Manual.

o Distributed EXEC (DEXEC). One of the DEXEC scheduling calls, such as DEXEC 9, 10, 12,
23, 24, programmatically schedules a program. DEXEC is a DS/1000-IV Compatible Service
and is described in the DS/1000-1V Compatible Services Reference Manual.

o REMAT. The REMAT QU (queue schedule a program without wait) command interactively
schedules a program. REMAT is a DS/1000-IV Compatible Service and is described in the
DS/1000-1V Compatible Services Reference Manual.

o TELNET virtual terminal. Logon remotely with TELNET and use the RTE X0 (schedule a
program without wait) command to interactively schedule a program. TELNET is an ARPA
Service. Refer to the “TELNET” section in this manual.

o RTE WELCOME file. The WELCOME file can have RTE run commands to schedule
programs after system boot up. Refer to the RTE-A System Generation and Installation
Manual for information about booting up the RTE system and about the WELCOME file.

5-32 Network Interprocess Communication

You cannot use any of the above NS-ARPA and DS/1000-IV compatible services to schedule a
remote HP 1000 process from a non-HP 1000 node. These services are not provided with
cross-system support.

Remote HP 1000 processes that are to work with non-HP 1000 processes can be manually started
or can be programs that are started at system start up.

e To manually start up a NetIPC program, simply logon to the HP 1000 system and run the
NetIPC program with the RTE XQ (run program without wait) command.

e To have the NetIPC program execute at system start up, put the RTE X0 command in the
WELCOME file.

The XQ command is explained in the RTE-A User’s Manual.

Remote HP 9000 NetIPC Process

Remote HP 9000 processes can be manually started or can be scheduled by daemons that are
started at system start up. In HP-UX a daemon is a process that runs continuously and usually
performs system administrative tasks. Although a daemon runs continuously, it performs actions
upon an event happening or at designated times.

To manually start up a NetIPC program, simply logon to the HP 9000 system and run the NetIPC
program. HP recommends that you write a NetIPC daemon to schedule your NetIPC programs.
You can start the daemon at system start up by placing it in your /etc/netlinkrc file. Refer to
the HP 9000 LAN software installation documentation for more information about this file and
system start up.

Remote HP 3000 NetIPC Process

To manually start up an HP 3000 NetIPC program, log on to the HP 3000 and run the NetIPC
program with the RUN command.

You can schedule the program to start at a particular time by writing a job file to execute the
program, and then including time and date parameters in the : STREAM command that executes
the job file.

Remote PC NetIPC Process

To manually start up a PC NetIPC program, enter the NetIPC program name at the MS-DOS*
prompt.

To execute from within MS-Windows, copy the NetIPC program files to your Windows directory
and double click with the mouse on the executable file.

*MS-DOS is a U.S. registered trademark of Microsoft Corporation.

Network Interprocess Communication 5-33

NetlPC Syntax Conventions

The syntax provided in the following pages for each NetIPC call is meant to illustrate a Pascal
procedure call statement. Parameters that are either output, or both input and output, are
underlined in the syntax diagram. All other parameters are input parameters. Please refer to the
sample programs for examples of Pascal and FORTRAN variable declarations.

All NetIPC call parameters are required. You may pass a zero in some parameters in order to
obtain a default value.

Note Do not use the Pascal/1000 IMPORT statement in place of the EXTERNAL
statement for NetIPC procedures. It is not supported with NetIPC.

5-34 Network Interprocess Communication

IPCCONNECT

Requests a connection to another process.

Syntax

IPCCONNECT (calldesc, pathdesc, flags, opt, vcdesc, result)

Parameters

calldesc 32-bit integer, by value in Pascal, by reference 1in
FORTRAN. Call socket descriptor. Refers to a call socket owned by the
calling process.

pathdesc 32-bit integer, by value in Pascal, by reference in
FORTRAN. Path report descriptor. Refers to the path report which
indicates the location of the destination call socket (this is the call socket to
which the connection request will be sent). A path report descriptor can be
obtained by calling IPCLookUp or IPCGet.

flags 32-bit integer, by reference. A 32-bit map of special request
bits. Refer to “Flags Parameter” for more information on the structure of
this parameter. The following option is defined for this call:

e flags [22]—CHECKSUMMING (input). When set, this flag
causes TCP to enable checksumming. However, not setting this bit
does not ensure that checksumming will not occur. TCP checksum
will always be performed if: the peer process calls IPCRecvCn
with the checksumming bit set. TCP checksum is performed in
addition to data link checksum. If TCP performs checksumming,
increased overhead is required and real-time integrity cannot be
guaranteed.

opt Byte array (Pascal),; Integer array (FORTRAN), by
reference. An array of options and associated information. Refer to
“Opt Parameter” for information on the structure and use of this
parameter. The following options are defined for this call:

e maximum send size (optioncode = 3, datalength = 2). A
two-byte integer that specifies the maximum number of bytes you
expect to send with a single IPCSend call on this connection.
Range: 1 to 8,000 bytes. Default: 100 bytes. If this option is not
specified, IPCSend will return errors if a call attempts to send
greater than 100 bytes.

Network Interprocess Communication 5-35

IPCCONNECT

e maximum receive size (optioncode = 4, datalength = 2). A
two-byte integer that specifies the maximum number of bytes you
expect to receive with a single TPCRecv call on this connection.
Range: 1 to 8,000 bytes. Default: 100 bytes. If this option is not
specified, IPCRecv will return errors if a call attempts to receive
greater than 100 bytes.

vedesc 32-bit integer, by reference. VC socket descriptor. Refers to a
VC socket that is the endpoint of the virtual circuit connection at this node.
May be used in subsequent NetIPC calls to reference the connection.

result 32-bit integer, by reference. The error code returned; zero if
no error.

Discussion

The IPCConnect call is used to initiate a virtual circuit on which data may be sent and received.
Compared to the telephone system, IPCConnect is similar to dialing a telephone but not waiting
for an answer. Pursuing this analogy, the pathdesc parameter is similar to a telephone number
and the calldesc parameter references a call socket or “telephone.” When IPCConnect is
called from your process, it uses its “telephone” (call socket descriptor) and “telephone number”
(path report descriptor) to “dial,” or initiate a connection with, another process. Socket
descriptors can be obtained with either an IPCCreate or IPCGet call. Path report descriptors
can be obtained with IPCLookUp and IPCGet.

IPCConnect could be said to “not wait for an answer” when it is called because it reports only
whether a virtual circuit has been initiated, not whether it was successfully established. If the
connection is successfully initiated, IPCConnect will return a VC socket descriptor in its
vedesc parameter. This VC socket descriptor refers to a VC socket that is the endpoint of the
virtual circuit at the local node. The VC socket descriptor identifies the connection in much the
same way that switch buttons are used to identify conversations on a multi-extension telephone.

Establishing a virtual circuit with NetIPC calls is a two-step process:

e First, IPCConnect is called to request a connection;

e Second, IPCRecv is called to find out if a connection initiated with IPCConnect was
successfully established.

Compared to the telephone system, this process is similar to dialing a telephone and then checking
to see if someone answered. Using this two-step process, processes can initiate several
connections simultaneously without waiting for each one to complete.

IPCConnect’s opt parameter enables you to specify the maximum number of bytes you expect
to send and receive on the connection. The default for both sending and receiving is 100 bytes.

A process may own a maximum of 32 call socket, VC socket, and path report descriptors.
IPCConnect will return an error if a process attempts to exceed this limit.

5-36 Network Interprocess Communication

IPCCONNECT

Cross-System Considerations

The following information summarizes cross-system NetIPC programming considerations for HP 1000
and HP 9000:

Checksumming—When the ipcconnect () call is executed on the HP 9000 node, then
checksumming is always enabled for the HP 9000-to-HP 1000 connection.

Send and Receive sizes—The HP 1000 send and receive size range is 1 to 8,000 bytes. The HP 9000
send and receive size range is 1 to 32,000 bytes. Although the ranges are different, cross-system
communication is not affected. Just be sure to specify a buffer size within the correct range for the
respective system.

The following information summarizes cross-system NetIPC programming considerations for HP 1000
and HP 3000:

Checksumming—TCP checksumming will be enabled for both sides of the connection if it is
enabled by either side. On both the HP 1000 and HP 3000, checksumming can be enabled by
setting bit 22 in the f1ags parameter. On the HP 3000, this bit can be used to override the
checksumming decision made during network transport configuration for this particular process.

Send and Receive sizes—The HP 1000 send and receive size range is 1 to 8,000 bytes. The HP 3000
send and receive size range is 1 to 30,000 bytes. Although the ranges are different, you must
specify a buffer size within the correct range for the respective system; otherwise, an error will
occur.

Note that the default send and receive sizes differ on the HP 1000 and HP 3000. On the HP 1000,
the default send and receive size is 100 bytes. On the HP 3000, the default send and receive size is
less than or equal to 1024 bytes.

The following information summarizes cross-system NetIPC programming considerations for HP 1000
and the PC:

Checksumming—With PC NetIPC, the TCP checksum option cannot be turned on. But if the
HP 1000 requires it, the TCP checksum is in effect on both sides of the connection.

Send and Receive sizes—The HP 1000 send and receive size range is 1 to 8,000 bytes. The PC send
and receive size range is 1 to 65,535 bytes. Although the ranges are different, cross-system
communication is not affected. Just be sure to specify a buffer size within the correct range for the
respective system; otherwise, an error will occur. For example, if a PC sends a 60,000 byte buffer,
the HP 1000 process may get all the data by posting seven IPCRecv calls of up to 8,000 bytes until
all the data has been received.

Network Interprocess Communication 5-37

IPCCONTROL

Performs special operations on sockets.

Syntax

IPCCONTROL (descriptor, request, wrtdata, wlen, readdata, rlen,
flags, result)

Parameters

descriptor 32-bit integer, by value in Pascal, by reference in
FORTRAN. The descriptor that refers to the socket to be manipulated. May
be a call socket descriptor or VC socket descriptor depending on the
request code specified in the request parameter.

request 32-bit integer, by value in Pascal, by reference 1in

FORTRAN. Request code. Defines which operation is to be performed.
May be one of the following:

e 1 = Place the socket referenced in the descriptor parameter in
asynchronous mode. For IPCSend and IPCRecv calls, this is the
VC socket described by the VC socket descriptor in the vedesc
parameter. For IPCRecvCn, it is the call socket described by the
call socket descriptor in the calldesc parameter. (Refer to
“Synchronous and Asynchronous Socket Modes” at the beginning of
this section for more information on asynchronous I/O.)

e 2 = Place the socket referenced in the descriptor parameter in
synchronous mode. For IPCSend and IPCRecv calls this is the
VC socket described by the VC socket descriptor in the vedesc
parameter. For IPCRecvCn, it is the call socket described by the
call socket descriptor in the calldesc parameter. (Refer to
“Synchronous and Asynchronous Socket Modes” at the beginning of
this section for more information on synchronous I/O.)

e 3 = Change the referenced socket’s synchronous timeout. The
default timeout value is 60 seconds. For IPCSend and IPCRecv
calls, this is the VC socket described by the VC socket descriptor in
the vedesc parameter. For IPCRecvCn, it is the call socket
described by the call socket descriptor in the calldesc parameter.
The timeout value is given in tenths of seconds. (For example, a
value of 1200 would indicate 120 seconds.) The new timeout value
must be placed in the wrtdata parameter. The timeout value
must be in the range of zero to 32767. Negative values have no
meaning and will result in error. A value of zero sets the timeout to
infinity. The timeout will not be reset if the referenced socket is
switched to asynchronous mode and then back to synchronous
mode.

5-38 Network Interprocess Communication

IPCCONTROL

e 1000 = Change the read threshold of the VC socket referenced in
descriptor parameter. (Read thresholds are one byte by
default.) The descriptor parameter must reference a VC socket
descriptor. The new read threshold value must be placed in the
wrtdata parameter. Refer to “Asynchronous and Synchronous
Socket Modes” at the beginning of this section for more information
on read thresholds.

e 1001 = Change the write threshold of the VC socket referenced by
the descriptor parameter. (Write thresholds are one byte by
default.) The descriptor parameter must reference a VC socket
descriptor. The new write threshold value must be placed in the
wrtdata parameter. Refer to “Asynchronous and Synchronous
Socket Modes” at the beginning of this section for more information
on write thresholds.

wrtdata 16-bit integer, by reference. A data buffer or data vector used
to pass timeout and threshold information. If a request of 3, 1000, or
1001 is specified, the wrtdata and wlen parameters are required. Refer
to “Data Parameter” for more information on data buffers and data

vectors.
wlen 32-bit integer, by value in Pascal, by reference in
FORTRAN. Length in bytes of the wrtdata parameter. Must be set to 2
bytes.
readdata Array, by reference. This parameter is reserved for future use.
rlen 32-bit integer, by reference. This parameter is reserved for
(input/output) future use.
flags 32-bit integer, by reference. A 32-bit map of special request

bits. This parameter is reserved for future use. All bits must be clear (set
to zero). Refer to “Flags Parameter” for more information on the structure
of this parameter.

result 32-bit integer, by reference. The error code returned; zero if
no error.

Discussion

The IPCControl call is used to manipulate sockets in special ways. The type of request is
specified by placing a certain request code in the requests parameter. Although all of the
request types require the descriptor, requests and result parameters, some of the
parameters are meaningless for certain requests. If request code 3, 1000 or 1001 is specified, the
wrtdata and wlen parameters are required.

Refer to “Synchronous and Asynchronous Socket Modes” at the beginning of this section for a
detailed discussion of synchronous mode, asynchronous mode, synchronous timeouts and read and
write thresholds.

Network Interprocess Communication 5-39

IPCCREATE

Creates a call socket.

Syntax

IPCCREATE (socketkind, protocol, flags, opt,calldesc, result)

Parameters

socketkind 32-bit integer, by value in Pascal, by reference in
FORTRAN. Indicates the type of socket to be created. Must be 3 to indicate
a call socket. (Other values are reserved for future use.)

Default: If zero is specified, a call socket will be created.

protocol 32-bit integer, by value in Pascal, by reference in
FORTRAN. Indicates the protocol module that the calling process wishes to
access. Must be 4 to indicate Transmission Control Protocol (TCP).
(Other values are reserved for future use.)

Default: 1f zero is specified, TCP will always be chosen for call sockets.

flags 32-bit integer, by reference. A 32-bit map of special request
bits. This parameter is reserved for future use. All bits must be clear (set
to zero). Refer to “Flags Parameter” for more information on the structure
of this parameter.

opt Byte array (Pascal),; Integer array (FORTRAN), by
reference. An array of options and associated information. Refer to
“Opt Parameter” for more information on the structure and use of this
parameter. The following options are defined for this call:

e maximum connection requests backlog (optioncode = 6,
datalength = 2). A two-byte integer that specifies the maximum
number of unreceived connection requests that may be queued to a
call socket. The value can be from 0 to 10. Default: Three
requests. (NOTE: A queue limit of three may be too few if many
processes attempt to initiate connections to the call socket
simultaneously. If this occurs, some connection requests may be
ignored.)

e protocol address (optioncode = 128, datalength = 2). A
two-byte integer that specifies a TCP protocol address to be used by
the newly created call socket. The valid range for IPC address is 1
to 32767. If this option is not specified, NetIPC will dynamically
allocate an address. Recommended Range: The recommended
range of TCP addresses for user applications is from 30767 to 32767
decimal.

5-40 Network Interprocess Communication

IPCCREATE

calldesc 32-bit integer, by reference. Call socket descriptor. Refers to
the newly created call socket.

result 32-bit integer, by reference. The returned error code; zero if
no error.

Discussion

IPCCreate is used to create a call socket or “telephone” which will be used by subsequent
NetIPC calls to establish a virtual circuit connection between two or more processes. When
invoked successfully, IPCCreate returns a call socket descriptor, or “telephone number,” that
refers to the newly created call socket. Invoking IPCCreate is a prerequisite for establishing a
connection.

A process may own a maximum of 32 call socket, VC socket, and path report descriptors.
IPCCreate will return an error if a process attempts to exceed this limit.

An option code of 128 can be used to create a call socket with a specific protocol address. If this
protocol address is known to the process’s peer, the peer process can call IPCDest with this
address (also known as a “well-known address”). The call is made in IPCDest’s protoaddr
parameter so that it may obtain a destination descriptor that references this call socket. Refer to
the explanation of IPCDest for more information.

Cross-System Considerations

The following information summarizes cross-system NetIPC programming considerations for HP 1000
and HP 9000:

TCP Protocol Address—The HP 1000 and HP 9000 implementations of IPCCreate support
different ranges of permitted TCP protocol addresses that can be specified in the opt parameter.
However, both implementations recommend that users specify TCP addresses in the range of
30767 to 32767 decimal for cross-system use. The IPCDest call uses the TCP protocol address
specified in IPCCreate on the remote process.

The following information summarizes cross-system NetIPC programming considerations for HP 1000
and HP 3000:

TCP Protocol Address—The recommended range of TCP addresses for user applications is from
30767 to 32767 decimal (74057 to 77777 octal) for both the HP 3000 and HP 1000. The IPCDest
call uses the TCP protocol address specified in IPCCreate on the remote process. However, on
NS3000/XL Release 1.1, a non-privileged user cannot specify a TCP address.

The following information summarizes cross-system NetIPC programming considerations for HP 1000
and the PC:

TCP Protocol Address—The HP 1000 and PC implementations of IPCCreate support different
ranges of permitted TCP protocol addresses that can be specified in the opt parameter. The PC
supports any value. However, both implementations recommend that users specify TCP addresses
in the range of 30767 to 32767 decimal for cross-system use. The IPCDest call uses the TCP
protocol address specified in IPCCreate on the remote process.

Network Interprocess Communication 5-41

IPCDEST

Creates a path report descriptor.

Syntax

IPCDEST (socketkind, nodename, nodelen, protocol , protoaddr , protolen,
flags, opt, pathdesc, result)

Parameters

socketkind 32-bit integer, by value in Pascal, by reference in
FORTRAN. Defines the type of socket. Must be 3 to specify a call socket.
Other values are reserved for future use.

nodename Packed array of characters (Pascal); Integer array
(FORTRAN), by reference. A variable length array of ASCII characters
identifying the node on which the path report descriptor is to be created.
The syntax of the node name is node [. domain[.organization]],
which is further described in “Node Names” of the “Introduction” section and
in “Nodename Parameter” in this section.

Default: You may omit the organization, organization and domain, or all
parts of the node name. When organization or organization and domain
are omitted, they will default to the local organization and/or domain. If
the nodelen parameter is set to zero, nodename is ignored and the node
name defaults to the local node.

nodelen 32-bit integer, by value in Pascal, by reference 1in
FORTRAN. The length in bytes of the nodename parameter. If this
parameter is set to zero, the nodename parameter is ignored and the node
name defaults to the local node. A fully-qualified node name length may be
50 bytes long.

protocol 32-bit integer, by value in Pascal, by reference 1in
FORTRAN. Defines the Transport Layer protocol to be used. Must be 4 to
indicate the Transmission Control Protocol (TCP). Other values are
reserved for future use.

protoaddr integer array, by reference. A data buffer that contains a TCP
protocol address. Recommended Range: The recommended range of TCP
addresses for user applications is from 30767 to 32767 decimal.

protolen 32-bit integer, by value in Pascal, by reference in
FORTRAN. The length in bytes of the protocol address. TCP protocol
addresses are two bytes long.

5-42 Network Interprocess Communication

flags

opt

pathdesc

result

Discussion

IPCDEST

32-bit integer, by reference. A 32-bit map of special request
bits. This parameter is reserved for future use. All bits must be clear (set
to zero). Refer to “Flags Parameter” for information on the structure of
this parameter.

Refer to “Opt Parameter” for information on the structure and use of this
parameter. No options are defined for this call.

32-bit integer, by reference. Path report descriptor. Describes
the location of named call socket. May be used in a subsequent
IPCConnect call to establish a connection to another process.

32-bit integer, by reference. The error code returned; zero if
no error.

The IPCDest call creates a path report descriptor that the calling process can use to establish a
connection to another process. This call is similar in function to IPCLookup because it returns a
path report descriptor. However, because IPCDest allows you to specify a protocol address, it
allows you to obtain a path report descriptor for a call socket with a particular protocol address. A
call socket can be created with a particular protocol address by using the IPCCreate call with the
PROTOCOL ADDRESS option.

The IPCDest call does not verify that the remote endpoint described by the input parameters
exists. This evaluation is delayed until the path report descriptor is used in a subsequent
IPCConnect call. Figure 5-13 shows how a a connection can be established using these two calls.

PROCESS A PROCESS B
IPCCreate IPCCreate
Create call socket “A” Create call socket “B”
with protocol address “x”
by using the PROTOCOL ADDRESS
option. IPCDest
Obtain a path report descriptor for
socket “A” by specifying protocol
address “x” in the protoaddr parameter
IPCConnect
Request a connection to Process A
by using the path report descriptor
obtained by IPCDest.
IPCRecvCn IPCRecv
Receive Process B’s Confirm Virtual Circuit
connection request connection status.

Figure 5-13. Connection Established with IPCDest and IPCConnect

Network Interprocess Communication 5-43

IPCDEST

Cross-System Considerations

The following information summarizes cross-system NetIPC programming considerations for HP 1000
and HP 9000:

TCP Protocol Address—The HP 1000 and HP 9000 implementations of IPCCreate support
different ranges of permitted TCP protocol addresses that can be specified in the opt parameter.
However, both implementations recommend that users specify TCP addresses in the range of
30767 to 32767 decimal for cross-system use. The IPCDest call uses the TCP protocol address
specified in IPCCreate on the remote process.

The following information summarizes cross-system NetIPC programming considerations for HP 1000
and HP 3000:

TCP Protocol Address—The recommended range of TCP addresses for user applications is from
30767 to 32767 decimal (74057 to 77777 octal) for both the HP 3000 and HP 1000. The IPCDest
call uses the TCP protocol address specified in IPCCreate on the remote process. However, on
NS3000/XL Release 1.1, a non-privileged user cannot specify a TCP address.

The following information summarizes cross-system NetIPC programming considerations for HP 1000
and the PC:

TCP Protocol Address—The HP 1000 and PC implementations of IPCCreate support different
ranges of permitted TCP protocol addresses that can be specified in the opt parameter. The PC
supports any value. However, both implementations recommend that users specify TCP addresses
in the range of 30767 to 32767 decimal for cross-system use. The IPCDest call uses the TCP
protocol address specified in IPCCreate on the remote process.

5-44 Network Interprocess Communication

IPCGET

Receives a descriptor that has been given away via IPCGive.

Syntax

IPCGET (givenname,nlen, flags,descriptor, result)

Parameters

givenname

nlen

flags

descriptor

result

Discussion

Packed array of characters (Pascal),; Integer array
(FORTRAN), by reference. An array containing the ASCII-coded
socket name that was assigned to the descriptor when it was given away via
a call to IPCGive. Upper and lower case characters are not considered
distinct. Refer to “Socketname Parameter” for a detailed discussion of
naming.

32-bit integer, by value in Pascal, by reference in
FORTRAN. The length in characters of givenname. Maximum length is 16
bytes.

32-bit integer, by reference. A 32-bit map of special request
bits. This parameter is reserved for future use. All bits must be clear (set
to zero). If IPCGet is called repeatedly, this field must be cleared before
each successive call. Refer to “Flags Parameters” for more information on
the structure of this parameter.

32-bit integer, by reference. The descriptor that was given
away via a call to IPCGive. May be a call socket descriptor, path report
descriptor or VC socket descriptor.

32-bit integer, by reference. The error code returned; zero if
no error.

IPCGet is used to obtain ownership of a call socket descriptor, path report descriptor or VC
socket descriptor that was given away by another process with an IPCGive call. The process that
calls IPCGet must match the name assigned to the descriptor by IPCGive. The name can be
obtained, and thus matched, using one of several methods. For example, the name could be:

coded into both processes

passed to the processes when they are scheduled

placed in a well-known memory or file location

sent inside data

A process may own a maximum of 32 call socket, VC socket, and path report descriptors. IPCGet
will return an error if a process attempts to exceed this limit.

Network Interprocess Communication 5-45

IPCGIVE

Gives up a descriptor so that another process may obtain it.

Syntax

IPCGIVE (descriptor,givenname,nlen, flags, result)

Parameters

descriptor 32-bit integer, by value in Pascal, by reference in
FORTRAN. The descriptor to be given up. May be a call socket descriptor,
VC socket descriptor or path report descriptor.

givenname Packed array of characters (Pascal),; Integer array

(input/output) (FORTRAN), by reference. An array containing the ASCII-coded
socket name to be temporarily assigned to the specified descriptor. Upper
and lower case characters are not considered distinct. NetIPC can also
return a randomly generated, eight-character name to this parameter (see
nlen). Refer to “Socketname Parameter” for a detailed discussion of
naming.

nlen 32-bit integer, by value in Pascal, by reference in
FORTRAN. The length in characters of givenname. Maximum length is 16
bytes.

Default: 1f zero is specified, NetIPC will generate a random eight byte
name and return it in the givenname parameter. (The length eight is not
returned through nlen.)

flags 32-bit integer, by reference. A 32-bit map of special request
bits. This parameter is reserved for future use. All bits must be clear (set
to zero). Refer to “Flags Parameter” for more information on the structure
of this parameter.

result 32-bit integer, by reference. The error code returned; zero if
no error.

Discussion

A process can invoke IPCGive to give a call socket descriptor, VC socket descriptor, or path
report descriptor that it owns to another process at the same node. For example, Process A at
node X can give a VC socket descriptor to Process B, also at node X, so that Process B may use a
connection Process A has previously established with Process C at node Z. Because Process B was
“given” the endpoint of a previously established connection, it does not need to create its own call
socket and engage in the NetIPC connection dialogue in order to exchange data with Process C.

When a process calls IPCGive, the referenced descriptor is given to NetIPC. The calling process
releases ownership of the descriptor and loses all access to it. Another process can get the

5-46 Network Interprocess Communication

IPCGIVE

released descriptor from NetIPC by calling IPCGet and supplying the proper name. If the calling
process terminates before the descriptor is retrieved by another process via IPCGet, the
descriptor is destroyed.

The name associated with the descriptor by IPCGive can be user-defined or randomly-generated
by NetIPC. The name associated with a descriptor must be unique to your node (i.e., the same
name cannot be simultaneously associated with two descriptors). For example, a descriptor
associated with the name “John” will work on the first call to IPCGive, but a subsequent call with
“John” will result in an error. A name can be used or reused only if it is not currently being used.

Data sent to a connection that has been given away is still queued on that connection. It is
recommended that descriptors not be given away while they are in awkward states. For example, it
may be confusing to give away a VC socket descriptor that refers to the endpoint of a virtual
circuit that has been initiated with IPCConnect, but has not been fully established with
IPCRecv.

You can associate a permanent name with a call socket descriptor by calling ITPCName. Unlike
IPCGive, this call is used when the calling process wants to retain access to the call socket, but
would like another process to be able to reference it. Refer to the discussion of IPCName for
more information.

Network Interprocess Communication 5-47

IPCLOOKUP

Obtains a path report descriptor.

Syntax

IPCLOOKUP (socketname , nlen, nodename, nodelen, flags, pathdesc, protocol,
socketkind, result)

Parameters

socketname Packed array of characters (Pascal); Integer array
(FORTRAN), by reference. An array containing the ASCII-coded
name of the call socket to be “looked up.” Upper and lower case
characters are not considered distinct. Refer to “Socketname Parameter”
for a detailed discussion of naming.

nlen 32-bit integer, by value in Pascal, by reference in
FORTRAN. The length of the socket name in characters. Maximum length
is 16 characters.

nodename Packed array of characters (Pascal); Integer array
(FORTRAN), by reference. A variable length array of ASCII
characters identifying the node where the socket specified in the
socketname parameter resides. The syntax of the node name is
node [.domain|[.organization]], which is further described in
“Node Names” of the “Introduction” section and in “Nodename
Parameter” in this section.
Default: You may omit the organization, organization and domain, or all
parts of the node name. When organization or organization and domain
are omitted, they will default to the local organization and/or domain. If
the nodelen parameter is set to zero, nodename is ignored and the node
name defaults to the local node.

nodelen 32-bit integer, by value in Pascal, by reference in
FORTRAN. The length in bytes of the nodename parameter. If this
parameter is zero (0), the nodename parameter is ignored and the node
name defaults to the local node. A fully-qualified node name length may be
50 bytes long.

flags 32-bit integer, by reference. A 32-bit map of special request
bits. This parameter is reserved for future use. All bits must be clear (set
to zero). Refer to “Flags Parameter” for more information on the structure
of this parameter.

pathdesc 32-bit integer, by reference. Path report descriptor. Refers to
the path report descriptor which indicates the location of the named call
socket. May be used in subsequent NetIPC calls (IPCConnect, IPCName,
IPCGive, etc.).

protocol 32-bit integer, by reference. ldentifies the protocol module with
which the “looked up” socket is associated. May be used in an IPCCreate
call to create a call socket with the appropriate protocol binding.

5-48 Network Interprocess Communication

IPCLOOKUP

socketkind 32-bit integer, by reference. lIdentifies the socket’s type.
result 32-bit integer, by reference. The error code returned; zero if
no error.

Discussion

The IPCLookUp call is used to gain access to a named call socket (refer to the IPCName call).
When supplied with valid socket and node names, it looks up the call socket in the socket registry
at the node specified in the nodename parameter and returns a path report descriptor that can be
used by subsequent NetIPC calls to locate the call socket. When used in an IPCConnect call, for
example, a path report descriptor can provide the information necessary to direct a connection
request to the proper node and call socket and thus initiate a connection.

Compared to the telephone system, invoking IPCLookUp is analogous to calling directory
assistance: the NetIPC process “calls the operator” (IPCLookUp) and gives him/her a “name”
(socketname) and a “location” (nodename parameter). The node name can be a “city”
(node), “state” (domain), and a “country” (organization name), justthe “city” and the
“state,” only the “city,” or no location at all. The omitted parts, or all, of the location will be
defaulted. Once the name is found, the operator returns a “telephone number” (pathdesc) to
the caller.

A process may own a maximum of 32 call socket, VC socket, and path report descriptors.
IPCLookUp will return an error if a process attempts to exceed this limit.

IPCDest also obtains a path report descriptor by specifying a particular protocol address instead
of a name. The advantage of using ITPCLookUp is that names might be easier to remember and
use. With IPCDest, the address must be unique, and other processes must cooperate and not use
that same address.

Race Conditions

When a process attempts to look up a socket name in the appropriate socket registry, the name
must be there or a “name not found” error (error code 37) will be returned to the calling process.
When two processes are running concurrently, it may be difficult to ensure that a socket name is
placed in the socket registry prior to being “looked up” by another process. This problem is
referred to as a race condition because the two processes are “racing” to see which one will access
the socket registry first. There are a few ways to avoid a race situation:

e The process that calls IPCLookUp can test for a “name not found” error (error code 37) in
the call’s result parameter. If this error is returned, the process can try again by entering a
loop and repeating the ITPCLookUp call for a specified number of times.

e The process that calls IPCLookUp can call EXEC 12 (time schedule a program) before
calling IPCLookUp.

e The process that calls IPCName can name its call socket and then schedule the process that
calls IPCLookUp. Remote Process Management (RPM), DEXEC, and PTOP include calls
that allow you to programmatically schedule a process at a remote NS-ARPA/1000 node.

Network Interprocess Communication 5-49

IPCNAME

Associates a name with a call socket descriptor.

Syntax

IPCNAME (descriptor, socketname ,nlen, result)

Parameters

descriptor 32-bit integer, by value in Pascal, by reference in
FORTRAN. The call socket descriptor to be named.

socketname Packed array of characters (Pascal); Integer array

(input/output) (FORTRAN), by reference. An array containing the ASCII-coded
socket name to be associated with the descriptor. Upper and lower case
characters are considered equivalent. NetIPC can also return a
randomly-generated name in this parameter (see nlen). Refer to
“Socketname Parameter” for a detailed discussion of naming.

nlen 32-bit integer, by value in Pascal, by reference 1in
FORTRAN. The length in characters of socketname. Maximum length is
16 characters.

Default: 1f zero is specified, NetIPC will return a random, eight-byte name
in the socketname parameter. The eight-byte length is not returned in
the nlen parameter.

result 32-bit integer, by reference. The error code returned; zero if
no error.

Discussion

IPCName associates a name with the descriptor and adds this information to the local node’s
socket registry. Like a telephone directory that associates names with telephone numbers, the
socket registry associates names with protocol addresses. NetIPC must be provided with these
addresses before it can establish a connection to the corresponding call socket.

The name a process associates with its call socket descriptor must be known to its peer process so
that the peer process may look up the name with an IPCLookUp call. This may be accomplished
by hard-coding the name into both processes or by passing the name from one process to another.

The name associated with a descriptor can be user-defined or randomly generated by NetIPC and
must be unique to your node (that is, it cannot be simultaneously associated with two descriptors.)
For example, if a descriptor is assigned the name “Liz” with a call to IPCName, a subsequent call
to IPCName with “Liz” will result in an error. You can ensure that the name you assign to a
descriptor is unique by using the random name generating feature of IPCName. A name can be
reused only if it is not currently being used. A descriptor, however, may be listed under multiple
names.

5-50 Network Interprocess Communication

IPCNAME

Under most circumstances, IPCName should be called with a name and the call socket descriptor
that refers to a call socket owned by the calling process. If the call completes successfully, the call
socket will be listed in the socket registry at the local node. IPCLookUp can be called to “look
up” the socket name in the local node’s socket registry.

IPCName always enters its listings into the local node’s socket registry. IPCLookUp, by contrast,
can look up socket names at both the local node and at a remote node.

Note You cannot use IPCName to name VC sockets.

Network Interprocess Communication 5-51

IPCNAMERASE

Deletes a name associated with a call socket descriptor.

Syntax

IPCNAMERASE (socketname ,nlen, result)

Parameters

socketname Packed array of characters (Pascal); Integer array
(FORTRAN), by reference. An array containing an ASCII-coded
name that was previously associated with a call socket descriptor via
IPCName. Upper and lower case characters are considered equivalent.
Refer to “Socketname Parameter” for a detailed description of naming.

nlen 32-bit integer, by value in Pascal, by reference 1in
FORTRAN. The length in bytes of the specified name. Maximum length is
16 bytes.

result 32-bit integer, by reference. The error code returned; zero if
no error.

Discussion

IPCNamErase can be called to remove listings from the local node’s socket registry. Only the
owner of a call socket descriptor may remove its name from the local socket registry. (A NetIPC
error code 38 is returned in the result parameter if the calling process attempts to erase the
name of a socket it does not own.)

If a call socket descriptor is destroyed via IPCShutDown, or if its owner terminates, then any
listings for it that exist at the local socket registry are automatically purged.

5-52 Network Interprocess Communication

IPCRECV

Establishes a virtual circuit connection by receiving a response to a connection request, or receives
data on a previously established connection.

Syntax

IPCRECV (vcdesc, data,dlen, flags, opt, result)

Parameters

vcdesc

data

dlen
(input/output)

flags
(input/output)

32-bit integer, by value in Pascal, by reference in
FORTRAN. VC socket descriptor. Refers to a VC socket that: (1) is the
endpoint of a virtual circuit connection that has not yet been established, or
(2) is the endpoint of a previously established virtual circuit on which data
will be received.

Packed array of characters (Pascal); Integer array
(FORTRAN), by reference. A data buffer that will hold the received
data, or a data vector describing the location where the data is to be placed.
Refer to “Data Parameter” for information on the structure and use of this

parameter.

32-bit integer, by reference. When the data parameter is a
data buffer, d1en is the maximum number of bytes you are willing to
receive. When the data parameter is a data vector, d1en refers to the
length of the data vector in bytes. As a return parameter (output), dlen
indicates how many bytes were actually received.

If IPCRecv is used to establish a connection (not to receive data), the
dlen parameter is meaningless on input and a value of 0 is returned on
output.

If the DATA_WAIT flag (see £lags [21] below) is zero, then dlen
returns with the length of whatever data there is. If the DATA_ WAIT flag
is set to one, then either d1en returns with the same amount requested or a
“WOULD BLOCK?” error occurs. Refer to “Synchronous vs.
Asynchronous I/O” later in this subsection for more detailed explanations.

32-bit integer, by reference. A 32-bit map of special request
bits. Refer to “Flags Parameter” for more information on the structure and
use of this parameter. The first IPCRecv call establishes a virtual
connection and f1ags has no meaning. For subsequent IPCRecv calls,
flags will then be invoked for the established connection. FIlags must be
initialized each time it is used by any NetIPC call. The following flags are
defined for this call:

Network Interprocess Communication 5-53

IPCRECV

flags [21]—DATA_WAIT (input). When this flag is set,
IPCRecv waits until all the data that it requested in the d1en
parameter has been received. If this bit is set to zero, IPCRecv
may complete receiving less data than it requested in d1en. Refer
to “Synchronous vs. Asynchronous I/O” later in this subsection for
more detailed explanations.

Note User programs written prior to software Revision 5.0 that wait on the IPCRecv
call until d1en amount of data has been received must change to set the
DATA_WAIT flag to continue operating as they did before.

opt Byte

flags [31]—PREVIEW (input). When set, this flag allows you
to preview the data queued on the connection. Data is placed in the
data parameter but not dequeued from the connection. Because
the data is not dequeued, another IPCRecv call is needed to delete
the same data.

flags [32]—VECTORED (input). When set, this flag indicates
that the data parameter is a data vector and not a data buffer.

array (Pascal),; Integer array (FORTRAN), by

reference. An array of options and associated information. Refer to
“Opt Parameter” for information on the structure and use of this
parameter. The following option is defined for this call:

e data offset (optioncode = 8, datalength = 2). A two-byte
integer that defines a byte offset from the beginning of a data buffer
where NetIPC is to begin placing the data. This option is valid only
if the data parameter is a data buffer and not data vector.

result 32-bit integer, by reference. The error code returned; zero if
no error.

Discussion

IPCRecv has two functions:

e establish a virtual circuit connection that was initiated with ITPCConnect

e receive data on a previously established virtual circuit connection

5-54 Network Interprocess Communication

IPCRECV

Establishing a Connection

When IPCRecv is successfully called to establish a connection, no data is returned in the data
parameter and zero is returned in the result parameter. If the call is unsuccessful, a non-zero
value is returned in result. The call could be unsuccessful for the following reasons:

Timed-Out Error Received. The synchronous timer expired before the connection could be
established. The connection is still pending and IPCRecv should be called again to establish
the connection. The timeout can be adjusted by calling IPCControl. Refer to the
discussion of IPCControl for more information.

“Would Block” Error Received. The VC socket referenced by IPCRecv is in asynchronous
mode and the call could not be satisfied. The connection is still pending and IPCRecv should
be called again to establish the connection. For more information on trying to avoid this
error, refer to the following discussion titled “Synchronous vs. Asynchronous [/O”.

Connection Establishment Failed. 1f the connection could not be established for a reason other
than those listed above, the referenced VC socket should be shut down by calling
IPCShutDown.

Receiving Data

When IPCRecv is called to receive data queued on an established connection, the following
alternatives are available:

Normal reading. The requested data is dequeued from the connection and placed into the
user’s buffer.

Preview reading. This alternative is specified by setting the PREVIEW bit (flags [31]) of
the f1ags parameter. When this bit is set, the requested data is placed into the calling
process’s buffer but not dequeued from the connection. Consequently, the next IPCRecv call
will read the same data. Because PREVIEW enables a process to determine what a data
buffer contains before actually reading it, it is especially useful to set this bit when the
receiving process must assemble messages from the byte streams that it receives. For
example, if the sending process places the length of its “message” in the first two bytes of its
send buffer, the receiving process can use the PREVIEW option to extract the length
information from the data received. When the buffer is received again with a subsequent
IPCRecv call, the receiving process can specify this length information in the dlen
parameter and thus reassemble the “message.”

Vectored or “scattered” reading. The calling process may pass a data vector argument that
describes one or more locations. Received data will be placed into these locations. This
alternative can be used with both the normal and preview reads described above and is
specified by setting the VECTORED bit (flags [32]) of the fI1ags parameter. Refer to
the “Type Coercion” subsection earlier in this section for an example of a single data
parameter representing either vectored or unvectored data.

Network Interprocess Communication 5-55

IPCRECV

An IPCRecv request is considered satisfiable if the following condition is true:

e Enough data is queued on the connection to satisfy the request. 1f the specified data length (or
aggregate vector total) is not large enough to hold all of the data on a connection, then only
the amount of data requested will be returned to the calling process.

Synchronous vs. Asynchronous 1/O

The IPCRecv call functions differently depending on whether the socket referenced is in
synchronous or asynchronous mode, and whether or not the DATA_WAIT bit (bit 21) is set in the
flags parameter. The following paragraphs and Table 5-9 and Table 5-10 describe these
differences. When a socket is created, it is placed in synchronous mode by default. You can place
a socket in asynchronous mode by calling IPCControl. Refer to the discussion of IPCControl
earlier in this section for more information.

Note The “amount requested” by an IPCRecv call refers to the number of bytes
specified by the dlen parameter or the amount specified in the data vector if
the VECTORED flag is set.

o Synchronous 1/0, DATA_WAIT. If the socket referenced by IPCRecv is in synchronous mode
and the DATA_WAIT bit (bit 21) is set, the calling process will block until one of the
following actions occur:

e The amount of data queued on the connection is equal to or greater than the amount
requested.

o The call times out.

e The connection goes down.

If the data queued on the connection is less than dlen bytes, IPCRecv will suspend the
calling process and the synchronous timer will be set. If the timer expires before enough data
arrives to satisfy the request, the calling process will resume and a timeout error (code 59)
will be returned indicating that a timeout occurred. The synchronous timeout can be adjusted
by calling IPCControl. Refer to the discussion of IPCControl for more information.

o Synchronous I/O, DATA_WAIT set to zero. If the socket referenced by IPCRecv is in
synchronous mode and the DATA_WAIT bit (bit 21) is set to zero, the calling process will
block until one of the following actions occur:

e Some amount of data is queued on the connection. The amount of data queued may or
may not be the amount requested, and may be as little as one byte.

e The call times out.

e The connection goes down.

5-56 Network Interprocess Communication

IPCRECV

If no data is queued on the connection within the synchronous timeout period, the calling
process will resume and a timeout error (code 59) will be returned indicating that a timeout
occurred.

o Asynchronous I/O, DATA_WAIT set. If the socket referenced by IPCRecv is in asynchronous
mode and the DATA_WAIT bit is set, the calling process will block until one of the following
actions occur:

e The amount of data queued on the connection is less than the amount requested. A
“WOULD BLOCK?” error (code 56) is returned to the calling process.

e A remote abort error occurs.

The calling process is not suspended awaiting the arrival of data. You can perform a read
select on the referenced socket by invoking IPCSelect. IPCSelect determines whether or
not a socket is readable prior to calling IPCRecv to receive data. Refer to the discussion of
IPCSelect later in this section for more information.

o Asynchronous 1/0, DATA_WAIT set to zero. If the socket referenced by IPCRecv is in
asynchronous mode and the DATA WAIT bit is set to zero, as little as one byte of data will
satisfy the IPCRecv request.

e If no data is queued to the connection, a “WOULD BLOCK?” error (code 56) is returned
to the calling process.

e A remote abort error occurs.

One helpful way to remember the difference between DATA_WAIT set and set to zero is:
o If DATA WAIT is set, you are willing to wait for the exact amount of data you requested.

o If DATA WAIT is set to zero, you will take any amount of data.

For more discussion of asynchronous and synchronous I/O, refer to “Synchronous and
Asynchronous Socket Modes” at the beginning of this section. Examples follow in Table 5-9 and
Table 5-10.

Network Interprocess Communication 5-57

IPCRECV

Table 5-9. Synchronous I/O Example

NetIPC Call to
Send/Receive Data

Synchronous
DATA_WAIT is Set to Zero

Synchronous
DATA_WAIT is Set to One

1. Program A requests 200
bytes:
IPCRecv(...200...)

Program A receives 0 bytes and
waits for Program B to send
data with an IPCSend.

Program A receives 0 bytes and
waits for Program B to send
data with an IPCSend.

2. Program B on the remote
node sends 100 bytes:
IPCSend(...100...)

Program B sends 100 bytes.
Program A receives the 100
bytes and the TPCRecv
completes.

Program B sends 100 bytes.
Program A still waits for 200
bytes.

3. Program B on the remote
node sends another 100

Program B sends another 100
bytes. Program A is not doing
an IPCRecv call, so it does not
receive any data.

Program B sends another 100
bytes (200 total). Program A
receives the 200 bytes and
completes.

bytes:
IPCSend(...100...)
4. Program A requests 100
bytes:
IPCRecv(...100...)

Program A receives the 100
bytes and completes.

Program A receives 0 bytes and
waits for Program B to send
data with and IpCSend.

Note that steps 1 through 4 below are the same for both DATA_WAIT set to one and set to zero.

Table 5-10. Asynchronous I/O Example

NetIPC Call to
Send/Receive Data

Asynchronous
DATA_WAIT is Set to Zero

Asynchronous
DATA_WAIT is Set to One

1. Program A requests 200
bytes:
IPCRecv(...200...)

Program A receives 0 bytes and
completes with a
WOULD BLOCK error.

Program A receives 0 bytes and
completes with a
WOULD BLOCK error.

2. Program B on the remote
node sends 100 bytes:
IPCSend(...100...)

Program B sends 100 bytes.
Program A is no longer doing an
IPCRecv call, so does not wait
and does not receive any data.

Program B sends 100 bytes.
Program A is no longer doing an
IPCRecv call, so does not wait
and does not receive any data.

3. Program B on the remote
node sends another 100
bytes:
IPCSend(...100...)

Program B sends another 100
bytes (200 bytes total).
Program A is not doing an
IPCRecv call, so it does not
receive any data.

Program B sends another 100
bytes (200 bytes total).
Program A is not doing an
IPCRecv call, so it does not
receive any data.

4. Program A requests 100

Program A receives 100 bytes
and completes.

Program A receives 100 bytes
and completes.

bytes:
IPCRecv(...100...)
5. Program B sends another
100 bytes:
IPCSend(...100...)

Program B sends another 100
bytes (200 total). Program A is
not doing an IPCRecv call, so it
does not receive any data yet.

Program B sends another 100
bytes (200 total). Program A is
not doing an IPCRecv call, so it
does not receive any data yet.

6. Program A requests 300

Program A receives 200 bytes

Program A wants 300 bytes and

bytes: and completes. completes with a
IPCRecv(...300...) WOULD BLOCK error. No data
is passed to Program A.
5-58 Network Interprocess Communication

IPCRECV

Cross-System Considerations

The following information summarizes cross-system NetIPC programming considerations for HP 1000
and HP 9000:

Receive size (d1en parameter)—The HP 1000 receive size range is 1 to 8,000 bytes. The HP 9000
receive size range is 1 to 32,767 bytes. Although the range sizes that can be specified in the dlen
parameter are different, cross-system communication is not affected. Just be sure to specify a
buffer size within the correct range for the respective system.

The following information summarizes cross-system NetIPC programming considerations for HP 1000
and HP 3000:

Receive size (d1en parameter)—The HP 3000 receive size range is 1 to 30,000 bytes. The HP 1000
receive size range is 1 to 8,000 bytes. Although the range sizes that can be specified in the dlen
parameter are different, cross-system communication is not affected. Just be sure to specify a
buffer size within the correct range for the respective system.

Data wait flag—The HP 1000 IPCRecv call supports a “DATA_WAIT” flag. This flag, when set,
specifies that the call will not complete until the amount of data specified by the d1en parameter
has been received. This flag is not available on the HP 3000, meaning that the call may complete
before all the data is received. However, the HP 3000 IPCRecv supports other flags such as the
“more data” and “destroy data” flags. Refer to the description of IPCRecv in the NetIPC3000
manual for detailed information.

The following information summarizes cross-system NetIPC programming considerations for HP 1000
and the PC:

Receive size (d1en parameter)—The HP 1000 receive size range is 1 to 8,000 bytes. The HP 1000
enables you to specify the maximum receive size of the data buffer through the opt array in the
IPCConnect call. This determines what the maximum value for dlen can be for any IPCRecv
call. PC NetIPC has no option array defined for IPCConnect. This does not affect cross-system
communication. The maximum receive size of the data in the buffer on the HP 1000 will
determine the receive size buffer on the PC.

Data wait flag—The HP 1000 IPCRecv call supports a “DATA_WAIT” flag. This flag, when set,
specifies that the call will not complete until the amount of data specified by the d1en parameter
has been received. This flag is not available on the PC, meaning that the call may complete before
all the data is received.

Network Interprocess Communication 5-59

IPC

RECVCN

Receives a connection request on a call socket.

Syntax

IPCRECVCN (calldesc, vedesc, flags, opt, result)

Parameters

calldesc 32-bit integer, by value in Pascal, by reference 1in
FORTRAN. Socket descriptor. Refers to a call socket owned by the calling
process.

vedesc 32-bit integer, by reference. VC socket descriptor. Refers to a
VC socket that is the endpoint of the newly-established virtual circuit
connection.

flags 32-bit integer, by reference. A 32-bit map of special request
bits. Refer to “Flags Parameter” for more information on the structure of
this parameter. The following flags are defined for this call:

e flags [22]—CHECKSUMMING (input). When set, this flag
causes TCP to enable checksumming. However, not setting this bit
does not ensure that checksumming will not occur. TCP checksum
will always be performed if: the peer process calls IPCConnect
with the checksumming bit set. TCP checksum is performed in
addition to data link checksum. If TCP performs checksumming,
increased overhead is required and real-time integrity cannot be
guaranteed.

opt Byte array (Pascal),; Integer array (FORTRAN), by
reference. An array of options and associated information. Refer to
“Opt Parameter” for information on the structure and use of this
parameter. The following options are defined for this call:

e maximum send size (optioncode = 3, datalength = 2). A
two-byte integer that specifies the maximum number of bytes you
expect to send with a single call to IPCSend on this connection.
Range: 1 to 8,000 bytes. Default: 100 bytes. If this option is not
specified, IPCSend will return an error if a call attempts to send
greater than 100 bytes.

e maximum receive size (optioncode = 4, datalength = 2). A
two-byte integer that specifies the maximum number of bytes you
expect to receive with a single call to IPCRecv on this connection.
Range: 1 to 8,000 bytes. Default: 100 bytes. If this option is not
specified, IPCRecv will return errors if a call attempts to receive
greater than 100 bytes.

5-60 Network Interprocess Communication

IPCRECVCN

result 32-bit integer, by reference. The error code returned; zero if
no error.

Discussion

Compared to the telephone system, IPCRecvCn is analogous to answering a telephone because
processes must call IPCRecvCn to receive connection requests. Consider the following example:
Process A calls IPCConnect with a path report descriptor that refers to a path report which
indicates the location of a call socket owned by Process B. This causes Process B’s “telephone”
(call socket) to “ring” (receive a connection request). In order to answer its “telephone,” Process
B calls IPCRecvCn. A process’s call socket (or “telephone”) is considered to be “ringing” when it
has one or more queued connection requests. Process A must still call IPCRecv to determine
whether the connection was successfully established (that is, whether Process B “answered its
telephone”).

When IPCRecvCn is invoked successfully against a call socket that has queued connection
requests, it returns a VC socket descriptor to the calling process. This VC socket descriptor can
be used to specify the virtual circuit connection a process intends to send on, receive on, give away,
or shut down with subsequent NetIPC calls.

A process may own a maximum of 32 call socket, VC socket, and path report descriptors.
IPCRecvCn will return an error if a process attempts to exceed this limit.

Synchronous vs. Asynchronous 1/O

IPCRecvCn functions differently depending on whether the call socket referenced is in
synchronous or asynchronous mode. When a socket is created, it is placed in synchronous mode
by default. You can place a socket in asynchronous mode by calling IPCControl. Refer to the
discussion of IPCControl for more information. The following paragraphs describe these
differences:

e Synchronous 1/0. IPCRecvCn will block when invoked against a call socket that has no
queued connection requests if the socket is in synchronous mode. The calling process will
resume execution when a connection request arrives, or after the synchronous timeout
interval has expired. IPCRecvCn calls will not block indefinitely against a given call socket
unless the referenced socket’s synchronous timeout interval has been set to infinity via a call
to IPCControl. The default synchronous timeout is 60 seconds.

® Asynchronous I/O. IPCRecvCn will never block against sockets in asynchronous mode.
When IPCRecvCn is invoked against an asynchronous call socket that has no queued
connection requests, a “would block” error (error code 56) is returned to the calling process.
When IPCRecvCn is used in this way, the calling process does not wait to receive a
connection request. In order to determine when connection requests are present, a process
can perform an exception select on the referenced call socket by calling IPCSelect. (Refer
to the discussion of IPCSelect for more information.)

For a detailed discussion of synchronous and asynchronous I/O, refer to “Synchronous and
Asynchronous Socket Modes” at the beginning of this section.

Network Interprocess Communication 5-61

IPCRECVCN

Cross-System Considerations

The following information summarizes cross-system NetIPC programming considerations for HP 1000
and HP 9000:

Checksumming—When the ipcrecven () call is executed on the HP 9000 node, then
checksumming is always enabled for the HP 9000-to-HP 1000 connection.

Send and Receive sizes—The HP 1000 send and receive size range is 1 to 8,000 bytes. The HP 9000
send and receive size range is 1 to 32,767 bytes. Although the ranges are different, cross-system
communication is not affected. Just be sure to specify a buffer size within the correct range for the
respective system.

The following information summarizes cross-system NetIPC programming considerations for HP 1000
and HP 3000:

Send and Receive sizes—The HP 1000 send and receive size range is 1 to 8,000 bytes. The HP 3000
send and receive size range is 1 to 30,000 bytes. Although the ranges are different, you must
specify a buffer size within the correct range for the respective system; otherwise, an error will
occur. For example, if the HP 3000 sends 16,000 bytes, the HP 1000 node can call IPCRecv twice,
receiving 8,000 bytes the first time and the second 8,000 bytes the second time. Two processes
should already understand how much and what kind of data they expect to send and receive
whether or not they are cross-system processes. Note that the default send and receive sizes differ
on the HP 1000 and HP 3000. On the HP 1000, the default send and receive size is 100 bytes. On
the HP 3000, the default send and receive size is less than or equal to 1024 bytes.

The following information summarizes cross-system NetIPC programming considerations for HP 1000
and the PC:

Checksumming—With PC NetIPC, the TCP checksum option cannot be turned on. But if the
HP 1000 requires it, the TCP checksum will be in effect on both sides of the connection.

Send and Receive sizes—The HP 1000 send and receive size range is 1 to 8,000 bytes. The PC send
and receive size range is 1 to 65,535 bytes. Although the ranges are different, cross-system
communication is not affected. Just be sure to specify a buffer size within the correct range. For
example, if a PC sends 16,000 bytes, the HP 1000 computer can call IPCRecv twice, receiving
8,000 bytes the first time and the second 8,000 bytes the second time.

5-62 Network Interprocess Communication

IPCSELECT

Determines the status of a call socket or VC socket.

Syntax

IPCSELECT (sdbound, readmap, writemap, exceptionmap , timeout , result)

Parameters

sdbound
(input/output)

readmap
(input/output)

writemap
(input/output)

exceptionmap
(input/output)

32-bit integer, by reference. Specifies the upper ordinal bound
on the range of descriptors specified in the readmap, writemap and
exceptionmap parameters. An IPCSelect call will be most efficient if
this parameter is set to the maximum ordinal value of the sockets specified
in these parameters. Because a NetIPC process may have concurrent
access to a maximum of 32 descriptors, sdbound may be given a maximum
value of 32. As an output parameter, sdbound contains the upper ordinal
boundary of all of the descriptors that met the select criteria. If none of the
criteria were met, sdbound will be set to zero.

32-bit integer, by reference. A bit map indexed by VC socket
descriptors. When readmap is an input parameter, this map should have
bits set for all of the VC sockets from which you would like to receive data.
As an output parameter, readmap is a bit map describing all of the
read-selected VC sockets that are readable. (Refer to the discussion below
for more information on the structure and use of this parameter.)

32-bit integer, by reference. A bit map indexed by either call
socket descriptors or VC socket descriptors. When writemap is an input
parameter, this map should have bits set for all of the call sockets on which
you would like to initiate connections, or all of the VC sockets to which you
would like to send data. As an output parameter, writemap is a bit map
describing all of the write-selected sockets that are writeable. (Refer to the
discussion below for more information on the structure and use of this
parameter.)

32-bit integer, by reference. A bit map indexed by either call
socket descriptors or VC socket descriptors. When exceptionmap is an
input parameter, this map should have bits for all of the sockets for which
notification of exceptional conditions is desired. As an output parameter,
exceptionmap is a bit map describing all of the exception-selected
sockets that are exceptional. For call sockets, an exceptional condition is
present if a connection request is queued to the socket; for VC sockets, an
exceptional condition is present if the connection referenced by the socket
has been aborted. (Refer to the discussion below for more information on
the structure and use of this parameter.)

Network Interprocess Communication 5-63

IPCSELECT

timeout 32-bit integer, by value in Pascal, by reference in
FORTRAN. The number of tenths of seconds the calling process is willing to
wait for some event to occur which would cause IPCSelect’s report to
change. This timeout is put into effect only when none of the sockets
referenced can immediately satisfy the select criteria (that is, none are
readable, writeable or exceptional). If this value is set to zero, the call will
not block. If it is set to -1, the timeout will be set to infinity (that is, the call
will block).

result 32-bit integer, by reference. The error code returned; zero if
no error.

Discussion

IPCSelect permits a process to detect, and/or wait for, the occurrence of any of several events
across any of several sockets. Compared to the telephone system, invoking IPCSelect is
analogous to performing powerful “switchboard-like” operations because it enables a process to
act as a “switchboard operator” by monitoring the sockets, or “telephones,” that it owns. A
process should call IPCSelect with map bits set for descriptors that it owns. If a process
attempts to perform a select on a descriptor that it does not own, or on a path report descriptor,
an error will be returned.

IPCSelect reports three types of information:

e Whether any of the referenced VC sockets are readable. A VC socket is considered readable
if it can immediately satisfy an ITPCRecv request (with the DATA_WAIT flag set) for a
number of bytes equal to or less than its read threshold. Each VC socket has an associated
read threshold which, when the socket is first created, is set to one byte. This value can be
modified by calling IPCControl. (For more information on setting read thresholds, refer to
“Synchronous and Asynchronous Socket Modes” at the beginning of this section.) Read
selecting on call sockets has no meaning. Although doing so will not produce an error, this
practice should be avoided.

e Whether any of the referenced VC sockets are writeable. A VC socket is considered writeable
if it can immediately accommodate an IPCSend request that involves a number of bytes equal
to or less than the socket’s write threshold. Each VC socket has an associated write threshold
which, when the socket is first created, is set to one byte. This value can be modified by
calling IPCControl. (For more information on setting write thresholds, refer to
“Synchronous and Asynchronous Socket Modes” at the beginning of this section.)

e Whether any of the referenced call or VC sockets are exceptional. A VC socket is considered
exceptional if it has a problem associated with it (for example, the connection it references
was aborted). A call socket is considered exceptional if it has a connection request queued on
it, or if it can no longer be supported by NetIPC (for example, the node’s network manager
has shut the node down). In addition, path report descriptors and non-existent sockets will
select as exceptional.

The following are examples of read selecting, write selecting, and exception selecting using
IPCSelect.

5-64 Network Interprocess Communication

IPCSELECT

Examples

Detecting Connection Requests. By setting bits in the exceptionmap parameter, a process can
determine if incoming connection requests are queued to certain call sockets. Consider the
following example: Process A must determine whether certain call sockets have received
connection requests. To do this, Process A calls IPCSelect with the exceptionmap bits set to
correspond to these sockets. Assuming that the timeout interval is long enough (set by the
timeout parameter), IPCSelect will complete after at least one connection request has arrived
and has been queued on one of the sockets specified in exceptionmap. When the call
completes, only those bits that correspond to sockets that have queued connection requests remain
set; the other bits will have been cleared.

Performing a Read Select. By setting bits in the readmap parameter, a process can determine
whether certain VC sockets are readable. Consider the following example: Process A must
determine which of its VC sockets have data queued to them. To do this Process A performs a
read select on those sockets by setting bits in the readmap parameter to correspond with the
desired VC sockets. Upon completion of the call, only the bits that represent readable sockets will
remain set; the other bits will have been cleared. Process A can call IPCSelect with a
zero-length timeout to determine the status of a socket immediately, or with a non-zero timeout if
it is willing to wait for some data to arrive.

Performing a Write Select. By setting bits in the writemap parameter, a process can determine
whether certain VC sockets are writeable. Consider the following example: Process A must
determine which of its VC sockets can accommodate a new IPCSend request, and which of its call
sockets can accommodate a new IPCConnect request. To do this, it can perform a write select on
these sockets by setting bits in the writemap parameter to correspond with the desired VC and
call sockets. Upon completion of the call, only the bits that represent writeable sockets will
remain set; the other bits will have been cleared. Process A can call IPCSelect with a
zero-length timeout to determine the status of a socket immediately, or with a non-zero timeout if
it is willing to wait before sending data on the connection.

Exception Selecting. By setting bits in the exceptionmap parameter, a process can determine
whether certain connections have been aborted. VC sockets that reference aborted connections
will always exception select as “true” (their bits will be set when the call completes). Exception
selecting on VC sockets can also be useful when the connection associated with the socket is not
fully established. Consider the following example: Process B has successfully created a VC socket
via a call to IPCConnect, but will not know whether the connection associated with the socket is
established until it calls IPCRecv. If Process B calls IPCRecv before the connection is
established, or before it becomes known that the connection cannot be established, it will block if
the VC socket is in synchronous mode, or return a “would block™” error (error code 56) if the VC
socket is in asynchronous mode. Process B can avoid blocking, in the synchronous case, or polling,
in the asynchronous case, by performing an exception select on the new VC socket. The socket
will select as true if the connection has been established (a call to IPCRecv will be successful), or
if there is a problem associated with it (a call to IPCRecv will be unsuccessful).

Network Interprocess Communication 5-65

IPCSELECT

IPCSelect Call Bit Map Parameters

Note NetIPC calls assume that the bits in the readmap, writemap and exceptionmap
parameters are numbered from left to right with the most significant bit considered
to be bit one and the least significant bit considered to be bit 32. However, in
FORTRAN 77, the numbering of these bits is from 31 to 0:

MSB

123 456¢6 ... 32 IPCSelect map parameters
123456 ... 32 Pascal

31 3210 FORTRAN

In Pascal/1000, it is useful to represent the readmap, writemap and exceptionmap
parameters as type bit map type:

type bit map type = packed array [1..32] of boolean;

To set a bit in any of these parameters to correspond to a specific call socket or VC socket, use the
appropriate calldesc or vedesc value as a subscript and assign the value TRUE. For example:

read map [vcdesc] := TRUE;
write map [calldesc] := TRUE;
exception map [vcdesc] TRUE;

In FORTRAN 77, the readmap, writemap and exceptionmap parameters must be declared as
32-bit integers (INTEGER*4). The simplest way to set a bit in one of these parameters is to use the
FORTRAN 77 library function ibset (a, b). The readmap, writemap or exceptionmap
parameter is passed in the first argument (a) and the bit position you want to set is passed in the
second argument (b).

In the following FORTRAN 77 example, a bit is set in the readmap parameter:

c The vcdesc value is subtracted from 32 so that the proper
c bit is set. This maps ibset’s bit numbering convention into
c NetIPC's.

readmap = ibset (readmap, (32-vcdesc))

Multiple bits can be set by repeating the ibset function.

In Pascal/1000, type coercion can be used to quickly clear all of the bits in a bit map. This can be
done as follows:
type bit map type = packed array [1..32] of boolean;
read map = record
case boolean of
true : (bits : bit map type);
false : (int : integer);
end;

To invoke the bit map type, specify read map.bits; to invoke the integer type, specify
read map.int. If the value 0 is assigned to read map. int, all 32 bits will be cleared.

5-66 Network Interprocess Communication

IPCSEND

Sends data on a virtual circuit connection.

Syntax

IPCSEND (vcdesc, data,dlen, flags, opt, result)

Parameters

vcdesc 32-bit integer, by value in Pascal, by reference 1in
FORTRAN. VC socket descriptor. Refers to the VC socket endpoint of the
connection through which the data will be sent. A VC socket descriptor can
be obtained by calling IPCConnect, IPCRecvCn and IPCGet.

data Packed array of characters (Pascal); Integer array
(FORTRAN), by reference. A buffer that will hold the data to be
sent, or a data vector describing where the data to be sent is located. Refer
to “Data Parameter” for more information on the structure and use of this
parameter.

dlen 32-bit integer, by value in Pascal, by reference 1in
FORTRAN. If data is a data buffer, d1en is the length of the data in the
buffer. If data is a data vector, d1en is the length of the data vector.

flags 32-bit integer, by reference. A 32-bit map of special request
bits. Refer to “Flags Parameters” for more information on the structure
and use of this parameter. The following flags are defined for this call:

e flags [27]—HIGH THROUGHPUT (input). Indicates that
you would prefer high throughput to low delay. Refer to the
following “Discussion” subsection for more information.

e flags [32]—VECTORED (input). Indicates that the data
parameter refers to a data vector and not to a data buffer.

opt Byte array (Pascal),; Integer array (FORTRAN), by
reference. An array of options and associated information. Refer to
“Opt Parameter” for more information on the structure and use of this
parameter. The following option is defined for this call:

e data offset (optioncode = 8, datalength = 2). A two-byte
integer that indicates a byte offset from the beginning of the data
buffer where the data to be sent actually begins. Only valid if the
data parameter is a data buffer.

result 32-bit integer, by reference. The error code returned; zero if
no error.

Network Interprocess Communication 5-67

IPCSEND

Discussion

IPCSend is used to send data on an established connection. The data may be sent as a single
contiguous buffer or as a scattered data vector. If the data is vectored, NetIPC will gather all the
referenced data before sending it.

If flags [27] is set, the Transmission Control Protocol (TCP) may not immediately transmit
the data indicated by the data parameter. Instead, it may wait until it has received an amount of
data that can be transmitted with the greatest efficiency. Several transmissions of small amounts
of data consume more resources than one large transmission. If flags [27] is not set (set to
zero), TCP will attempt to transmit the data immediately, regardless of efficiency considerations.
If your process will be sending large amounts of data, HP recommends that you set flags [27].
If flags [27] is set and you submit only a small amount of data (less than a few hundred bytes),
then TCP may hold onto the data for a considerable period of time before transmitting it. HP also
recommends that you do not set £lags [27] when sending the last transmission on a
connection.

Synchronous vs. Asynchronous 1/O

IPCSend functions differently depending on whether the VC socket referenced is in synchronous
or asynchronous mode. The following paragraphs describe these differences:

e Synchronous 1/0. Send requests issued against VC sockets in synchronous mode may block.
IPCSend will block if it can not immediately obtain the buffer space needed to accommodate
the data. The call will resume after the required buffer space becomes available, or if the
synchronous timer expires. Timeouts usually occur when the process on the receiving end of
the connection stops receiving the data sent to it. (The length of the synchronous timeout
interval can be adjusted via IPCControl. Refer to the discussion of this call for more
information.)

e Asynchronous 1/0. Send requests issued against sockets in asynchronous mode will never
block. If the buffer space needed to accommodate the data is not immediately available, a
“would block™ error (error code 56) is returned. After receiving this error, the process can try
the call again later, or determine when the socket is writeable by calling TPCSelect. (Refer
to the discussion of IPCSelect for more information on writeable sockets.)

For a detailed discussion of synchronous and asynchronous I/O, refer to “Synchronous and
Asynchronous Socket Modes” at the beginning of this section.

Cross-System Considerations

The following information summarizes cross-system NetIPC programming considerations for HP 1000
and HP 9000:

Send size (d1en parameter)—The HP 1000 send size range is 1 to 8,000 bytes. The HP 9000 send
size range is 1 to 32,767 bytes. Although the range sizes that can be specified in the d1en
parameter are different, cross-system communication is not affected. Just be sure to specify a
buffer size within the correct range for the respective system.

5-68 Network Interprocess Communication

IPCSEND

The following information summarizes cross-system NetIPC programming considerations for HP 1000
and HP 3000:

Send size (d1en parameter)—The HP 1000 send size range is 1 to 8,000 bytes. The HP 3000 send
size range is 1 to 30,000 bytes. Although the range sizes that can be specified in the d1en
parameter are different, cross-system communication is not affected. Just be sure to specify a
buffer size within the correct range for the respective system.

Urgent Data—The HP 3000 supports an “urgent data” option in the opt parameter. If this bit is
set by the HP 3000 program, it will be ignored by the receiving process on the HP 1000.

The following information summarizes cross-system NetIPC programming considerations for HP 1000
and the PC:

Send size (d1en parameter)—The HP 1000 send size range is 1 to 8,000 bytes. The HP 1000
enables you to specify the maximum send size of the data buffer through the opt array in the
IPCConnect call. This determines what the maximum value for dlen can be for any IPCSend
call. PC NetIPC has no option array defined for IPCConnect. This does not affect cross-system
communication. The maximum send size of the data in the buffer on the HP 1000 will determine
the send size buffer on the PC.

Network Interprocess Communication 5-69

IPCSHUTDOWN

Releases a descriptor and any resources associated with it.

Syntax

IPCSHUTDOWN (descriptor, flags, opt, result)

Parameters

descriptor 32-bit integer, by value in Pascal, by reference in
FORTRAN. The descriptor to be released. May be a call socket descriptor,
VC socket descriptor, or path report descriptor.

flags 32-bit integer, by reference. A 32-bit map of special request
bits. This parameter is reserved for future use. All bits must be clear (set
to zero). Refer to “Flags Parameter” for more information on the structure
of this parameter.

opt Byte array (Pascal),; Integer array (FORTRAN), by
reference. An array of options and associated information. This
parameter is reserved for future use. You must initialize the opt
parameter to contain zero arguments. (See InitOpt later in this section
for more information.)

result 32-bit integer, by reference. The error code returned; zero if
no error.

Discussion

IPCShutDown is called to release a descriptor and any resources associated with it. The
descriptor referenced may be a call socket descriptor, VC socket descriptor, or path report
descriptor. How IPCShutDown functions depends on which type of descriptor is being used. If
the descriptor is a:

® call socket descriptor, the call socket referenced by the descriptor is destroyed along with any
names associated with it. The process that had access to the call socket may no longer use it,
and all connection requests queued to the socket are aborted. Since system resources are
used when a call socket is created, you may want to release your call sockets when they are no
longer needed. A call socket is needed as long as a process is expecting to receive a
connection request on that socket. After the connection request is received via IPCRecvCn,
and as long as no other connection requests are expected, the call socket descriptor can be
released. Similarly, a process that requests a connection can release its call socket any time
after its call to IPCConnect, as long as it is not expecting to receive a connection request on
that socket. Using IPCShutDown to release a call socket descriptor does not affect any VC
sockets.

5-70 Network Interprocess Communication

IPCSHUTDOWN

® path report descriptor, the addressing information stored in conjunction with the descriptor is
destroyed along with any names associated with it in the local socket registry. Because path
report descriptors also require system resources, you may want to release them when they are
no longer needed.

e VC socket descriptor, the VC socket descriptor is released and the referenced connection is
aborted and is no longer available for sending or receiving data. Because IPCShutDown
takes effect very quickly, all of the data that is in transit on the connection, including any data
that has already been queued on the destination VC socket, may be destroyed when the
connection is shut down. Obtaining confirmation from the receiver is the only way a sender
will know that data sent was actually received. Shutting down a VC socket does not affect any
call sockets.

Although NetIPC guarantees that data will be delivered reliably, this guarantee is contingent upon
a functioning network; data may not be received if nodes crash, network links fail, or peer
processes abort. If the process calling IPCShutDown sends important data to its peer process just
prior to shutting that process down, it is recommended that the calling process receive a
confirmation from the peer process before calling IPCShutDown to ensure that the data was
received.

For more information on IPCShutdown, refer to “Shutting Down a Connection” at the beginning
of this section.

Cross-System Considerations

The following information summarizes cross-system NetIPC programming considerations for HP 1000
and HP 9000:

Socket Shut Down—The shutdown procedure for both HP 1000 and HP 9000 processes is identical
except for shared sockets on HP 9000. Shared sockets are destroyed only when the descriptor
being released is the sole descriptor for that socket. Therefore, the HP 9000 process may take
longer to close the connection than expected.

The following information summarizes cross-system NetIPC programming considerations for HP 1000
and HP 3000:

Socket Shut Down—The shutdown procedure for both HP 1000 and HP 3000 processes is the
same, except that the graceful release flagis not available on the HP 1000. Do not set the
graceful release flag (flags 17) on the HP 3000. Otherwise, the HP 1000 will not perform a
normal shutdown. If the HP 3000 process does set the graceful release flag, the HP 1000
IPCRecv call will get a NetIPC error 68 (no more data) instead of a NetIPC error 64 (Connection
aborted by peer). The HP 1000 process should handle the error 68 as if it were an error 64. After
receiving a NetIPC error 68, subsequent IPCRecv calls will get a NetIPC error 109 (remote
connection has already graceful released the socket), because there is no more data available.

There are no cross-system considerations for HP 1000 and the PC.

Network Interprocess Communication 5-71

Special NetlPC Calls

The following calls, with the exception of AdrOf, are used to manipulate the opt parameter
found in many NetIPC and RPM calls. AdrOf is provided so that you can obtain the byte address
of any byte within a data object. Byte addresses are used to specify data vectors. For more
information on the opt parameter and its structure, refer to “Opt Parameter” at the beginning of
this section.

5-72 Network Interprocess Communication

ADDOPT

Adds an argument and its associated data to the opt parameter.

Syntax

ADDOPT (opt, argnum, optioncode ,datalength, data, error)

Parameters

opt Byte array (Pascal),; Integer array (FORTRAN), by
reference. The opt parameter to which you want to add an argument.
Refer to “Opt Parameter” for information on the structure and use of this
parameter.

argnum l6-bit integer, by value in Pascal, by reference in
FORTRAN. The number of the argument to be added. The first argument is
number zero.

optioncode l6-bit integer, by value in Pascal, by reference in
FORTRAN. The option code of the argument to be added. These codes are
described in each NetIPC call opt parameter description.

datalength l6-bit integer, by value in Pascal, by reference in
FORTRAN. The length in bytes of the data to be included. This information
is provided in each NetIPC call opt parameter description.

data Packed array of characters (Pascal); Integer array
(FORTRAN) , by reference. An array containing the data associated
with the argument.

error 16-bit integer, by reference. The error code returned; zero if
no error.

Discussion

The AddOpt call adds an argument and its associated data to an opt parameter. The parameter
must be initialized by InitOpt before arguments can be added.

The following Pascal/1000 program fragment illustrates the use of InitOpt and AddOpt to
initialize and add two arguments to the option parameter of an IPCConnect call. In this
example, the opt parameter is used to specify a maximum send size and maximum receive size of
1000 bytes. (Maximum send size indicates the maximum number of bytes that you expect to send
with a single IPCSend call and maximum receive size indicates the maximum number of bytes you
expect to receive with a single IPCRecv call.)

Network Interprocess Communication 5-73

ADDOPT

{InitOpt initializes the opt parameter to contain two arguments -- one
for the maximum send size and one for the maximum receive size.}

INITOPT (opt,2,error return) ;

{Addopt is called to add the maximum send size. The data parameter
contains the value 1000. Note that the first argument is number zero.}

ADDOPT (opt, 0,3,2,data,error_return) ;

{Addopt is called once more to add the maximum receive size. The data
parameter contains the value 1000.}

ADDOPT (opt,1,4,2,data,error return) ;
{IPCConnect can now be called with the opt parameter.}

IPCCONNECT (calldesc,pathdesc, flags, opt,vcdesc, result) ;

5-74 Network Interprocess Communication

ADROF

Obtains the byte address of any byte within a data object.

Syntax

ADROF (firstobjword, offset, byteaddress)

Parameters

firstobjword 16-bit integer, by reference. The name of the first (16-bit)
word of the data object.

offset l6-bit integer, by value in Pascal, by reference in
FORTRAN. An offset from the beginning of the data object. May be
positive or negative. (The first byte of a data object resides at offset zero.)

byteaddress l16-bit integer, by reference. The byte address of the byte that
is of fset bytes away from the first object word.

Discussion

AdrOf enables you to obtain a byte address that can be placed in the byte address field of a data
vector. This call is necessary because most high level languages on RTE-A systems do not support
the referencing of byte addresses.

The following program fragment shows AdrOf being used to prepare a data vector.

TYPE
byte = 0..255;
intlé = -32768..32767;
vector type = array [1..10] of intleé;

VAR
big array : RECORD
CASE BOOLEAN OF
true : (bytes : packed array [0..999] of byte);
false (words : array [0..499] of intle);
END; {case}
END; {big array}

header : RECORD
length : intle;
msg kind : intlé;
options : intlé;

END; {header}

vector : vector type;
vector len : integer;

Network Interprocess Communication 5-75

ADROF

BEGIN

{Prepare a data vector that describes the header record,

bytes 51 through 60 of big array, and also bytes 500 through 999
of big array.}

ADROF (header.length, 0,vector[1]) ;

vector[2] := 6;

ADROF (big array.words[0],51,vector[3]);

vector[4] := 10;

ADROF (big array.words[0],500,vector[5]) ;

vector [6] = 500;
vector len := 12;
flags[31] := TRUE;

IPCSEND (vedesc, vector,vector len, flags,opt, result) ;

5-76 Network Interprocess Communication

INITOPT

Initializes the opt parameter so that arguments can be added.

Syntax

INITOPT (opt, optnumarguments , error)

Parameters

opt Byte array (Pascal),; Integer array (FORTRAN), by
reference. The opt parameter to be initialized. Refer to “Opt
Parameter” for information on the structure and use of this parameter.

optnumarguments 16-bit integer, by value in Pascal, by reference in
FORTRAN. The number of arguments that will be placed in the opt
parameter. If this parameter is zero, the opt parameter will be initialized
to contain zero arguments.

error 16-bit integer, by reference. The error code returned; zero if
no error.

Discussion

InitOpt must be called to initialize the opt parameter prior to adding arguments to it with
Addopt. The optnumarguments parameter specifies how many arguments can be placed in the
opt parameter. For example, if zero is specified, no arguments can be added to the opt
parameter; if three is specified, three arguments must be added.

In the following program fragment, the same opt parameter is used in two different
IPCConnect calls. The first call requests a connection with the default maximum send and
receive sizes (100 bytes), so its option parameter is initialized to contain zero arguments. The
second IPCConnect call requests a connection with a maximum send and receive size of 1000
bytes. Thus, its option parameter must be initialized to contain two arguments, the first to contain
the maximum send size, and the second to contain the maximum receive size.

{InitOpt initializes the opt parameter used in the first IPCCONNECT

call to contain zero entries. This will cause the maximum send
and receive sizes to default to 100 bytes.}

INITOPT (opt, 0,error return) ;

{IPCConnect can now be called using the opt parameter.}
IPCCONNECT (calldesc,pathdesc, flags, opt,vcdesc, result) ;

{InitOpt reinitializes the opt parameter to be used in the second
IPCConnect call. This call specifies the maximum send and receive

sizes, so it must be initialized to contain two arguments.}

INITOPT (opt,2,error return) ;

Network Interprocess Communication 5-77

INITOPT

{The AddOpt call is used to add the maximum send size argument

as the first argument to the opt parameter. The maximum

send has an option code of 3. The data parameter contains

the value 1000. (Note that the first argument is argument number zero.)}
ADDOPT (opt, 0,3,2,data,error_return) ;

{The AddOpt call is used again to add the maximum receive size

as the second argument to the opt parameter. The maximum receive
size has an option code of 4. The data parameter contains the
value 1000.}

ADDOPT (opt,1,4,2,data,error_return) ;

{IPCConnect can now be called using the opt parameter.}

IPCCONNECT (calldesc two,pathdesc two, flags,opt,vcdesc two,result) ;

5-78 Network Interprocess Communication

READOPT

Obtains the option code and argument data associated with an opt parameter argument.

Syntax

READOPT (opt, argnum, optioncode, datalength, data, error)

Parameters

opt Byte array (Pascal),; Integer array (FORTRAN), by
reference. The opt parameter to be read. Refer to “Opt Parameter”
for information on the structure and use of this parameter.

argnum l6-bit integer, by value in Pascal, by reference in
FORTRAN. The number of the argument to be obtained. The first
argument is number zero.

optioncode 16-bit integer, by reference. The option code associated with
the argument. These codes are described in each NetIPC call opt
parameter description.

datalength l16-bit integer, by reference. The length of the data buffer into

(input/output) which the argument should be read. If the data buffer is not large enough
to accommodate the argument data, an error will be returned. On output,
this parameter contains the length of the data actually read. (The length of
the data associated with a particular option code is provided in each
NetIPC call opt parameter description.)

data Array, by reference. An array which will contain the data read from
the argument.

error l16-bit integer, by reference. The error code returned; zero if

no error.

Network Interprocess Communication 5-79

Client-Server Program Examples

The two pairs of NetIPC example programs that follow are referred to as servers and clients. One
server-client pair is in Pascal and the other pair is the equivalent programs in FORTRAN. This
server-client pair is a fairly typical model for an application having multiple nodes (the clients)
requesting information from a database or file on a single system (the server). The server
program handles incoming requests from multiple clients on a first-come, first-served basis.

The following steps provide a general description of the interaction between the server and client
programs:

1. The server waits for the client to request service.

2. A client establishes a connection with the server. Then that client asks for information by
sending a user name to the server.

3. The server searches for the proper information by opening a data file. Each record in the
data file contains a user name field and an information field. The server searches for the user
name. If found, the server sends the accompanying information in reply to the client.

4. The client receives its information and may request more.
5. Once the client has received all that it needs, it shuts down the connection.

6. After the server is notified that the connection has been shut down, it cleans up its internal
data structures (tables).

The maximum number of clients that the server can handle at one time is system dependent. This
number is based upon the maximum number of incoming call requests for a socket. On HP 1000,
the maximum number is 31. On HP 9000, the maximum number is 59. On HP 3000, the maximum
number is 63.

Detailed explanations of the client and server programs, what NetIPC calls were used, and why are
discussed in the following paragraphs.

Server Program

You must start up the server yourself if this is a cross-system application. Otherwise, you can use
RPM to execute a program on a remote NS-ARPA/1000 node.

e The server starts up first creating a call socket with a well-known TCP port address
(IPCCreate). A well-known port address means that the socket’s address is known by the
client program. The call socket is where the client will direct its initial connection request.

e After the call socket is created, the server waits for incoming calls from its clients. The server
waits by setting its synchronous timeout to infinity (IPCControl). The server will wait
indefinitely for a client to make a request.

5-80 Network Interprocess Communication

The server constantly checks for a connection request from a client (IPCSelect). How the
server does this is further explained in “Explanation of Server Using IPCSelect” below. When
a client sends a connection request, the server accepts the incoming connection request
(IPCRecvCn). At this point the server does not know which client is requesting the
connection. If required, client identification information could be provided in the first data
message sent by the client.

Once the server accepts the connection request, the virtual circuit is then established with the
client. The server then waits for the client to request information. The client requests
information from the server with an IPCSend call. The server responds with an IPCRecv
call. The client and server then have an interactive dialogue of IPCSend and IPCRecv calls:

The client sends a message containing a name (IPCSend). The server reads the message
(IPCRecv). Variable length messages can be handled by manipulating the send and
receive buffer sizes in the IPCSend and IPCRecv calls.

The server looks up the name in the data file. If the name is found, the server retrieves
the accompanying information and sends it to the client (IPCSend). If the name is not
found, the server returns an error string to the client (IPCSend).

After handling the client’s request for information, the server checks for any more clients
requesting a connection or information.

After the client has received its information data, it shuts down (IPCShutDown) the
connection established with the server. The server receives an error on the virtual circuit as
notification that the connection has gone down. The server does not do any error recovery
and assumes that the client knows that the transaction is complete.

The server never shuts down its call socket, because it is always ready to accept incoming
requests from clients. The call socket is shut down automatically by NS-ARPA when the
program terminates.

Explanation of Server Using IPCSelect

The server uses IPCSelect to facilitate handling several clients. The server has two bit
maps—the read map for receiving clients’ requests for information and the exception map for
handling connection requests on the call socket and shutdown notification on virtual circuits.

Each bit represents a socket that the server has in use.

The read map is cleared initially. The exception map has one bit set for the server’s call socket.

The server suspends on the IPCSelect call. The timeout for the IPCSelect has been set to
infinity to wait for a client’s request. (In other applications, the server could have a timeout and
could do other processing while waiting for a client’s request.)

The server responds to any one of these three cases:

A client requests a new connection. The server’s call socket’s bit in the exception map is set
to true.

A client requests data (such a client has already established virtual circuit). The server’s
virtual circuit socket’s bit in the read map is set to true.

Network Interprocess Communication 5-81

e A virtual circuit goes down. The server’s virtual circuit socket’s bit in the exception map is set
to true.

When a client requests to establish a connection, the server’s exception map is set and the server
responds with an IPCRecvCn to the client to establish a connection. If the server has all its bits
set in the exception map, it has reached its limit and cannot handle any more client requests.

Once the connection is established, the server has a virtual circuit to “watch” for incoming data.
The server sets a bit in the read map for this virtual circuit.

The server also sets a bit in the exception map for the virtual circuit to be notified if the
connection goes down. The bit for the call socket remains set in the exception map. The server is
maintaining two variables for the maps—one to keep track of what bits should be set each time
and one that is actually used for the IPCSelect.

After setting its maps, the server waits for another client request with an IPCSelect call. Other
client requests are handled by the server in a similar way as the connection request. If a client
requests data, the server’s read map is set (TRUE) which triggers the server that there is data on a
particular virtual circuit. After checking its read map, the server reads the data (IPCRecv) which
is a name to be used as a “key” for information retrieval. If the name matches the server’s data
file, the server returns corresponding information to the client (IPCSend). If the name does not
match, the server returns an error string.

After the IPCSend call completes, the server resumes monitoring client requests with the
IPCSelect call

When a virtual circuit goes down, the error notification is also made with a bit in the exception
map being set (TRUE). The server responds by issuing an IPCShutDown for the virtual circuit
and clears the bits maps for the corresponding socket descriptor. Then the server resumes
monitoring other client requests with the IPCSelect call.

Client Program
You must start up the client yourself if this is a cross-system application. Otherwise, you can use
RPM to execute a program on a remote NS-ARPA/1000 node.

e The client program prompts you for the name of the system on which the server program
resides. The client then creates a call socket (IPCCreate).

e The client creates a path report descriptor for the socket with IPCDest using the well-known
address.

e A connection request to the server (IPCConnect) is received by the server’s call to
IPCRecvCn.

e The timeout on the virtual circuit socket is set to infinity (IPCControl). This causes the
client to wait for the server’s response indefinitely unless the client receives notification that
the connection is down.

e The client asks the user for the name for which information is requested and sends the
request to the server.

5-82 Network Interprocess Communication

e The client then suspends on an IPCRecv call waiting for the server to reply. As explained in
the “Server Program” above, the server receives the request for information, retrieves it, and
then sends information back to the client (IPCSend). The client will then obtain the
information (IPCRecvV).

e The client then prompts the user for another name and the above procedures repeat. You
terminate the program by entering EOT for the name. This invokes the client to shut down
the connection (IPCShutDown). The shut down does not need response from the server,
because no data is pending. The server assumes that the client knows when it has received all
the information or data that it needs.

Cross-System NetlPC Program Examples

The following HP 1000 NetIPC programs will work together on the HP 1000. In addition, each
program will work as a cross-system application with a corresponding NetIPC program written for
either the HP 9000 or HP 3000. Corresponding programs have been included in the other NetIPC
manuals for HP 9000 and HP 3000. These programs are not intended to be portable to other
computers.

Programming examples are included with NS-ARPA/1000 software. The example files are as
follows:

Pascal client /NS1000/EXAMPLES/client.pas
Pascal server /NS1000/EXAMPLES/server.pas
FORTRAN 77 client /NS1000/EXAMPLES/client.ftn
FORTRAN 77 server /NS1000/EXAMPLES/server.ftn
data file /NS1000/EXAMPLES/datafile

Network Interprocess Communication 5-83

Pascal/1000 Client NetIPC Program

SPASCAL ’91790-18263 REV.5010 <880420.0920>"

To show the operation of the IpcSelect() call.

CDS
(o
{}

{ NAME: CLIENT

{ SOURCE: 91790-18263

{ RELOC: NONE

{ PGMR: LMS

{}
(o
{

{

{ PURPOSE:

{

{

PROGRAM client (input, output);

LABEL
89,
99;

CONST

BUFFERLEN = 20;
CALL_SOCKET = 3;
CHANGE_TIMEOUT =
FOREVER = TRUE;
INFINITE SELECT = -1;
INFOBUFLEN = 60;
INTEGER_LEN = 2;
INT16 LEN = 2;
LENGTH_OF DATA = 20;
MAX BUFF_SIZE = 1000;
MAX RCV_SIZE = 4;

MAX SEND SIZE = 3;
MAX SOCKETS = 32;
PROTO ADDR = 31767;
TCP = 4;

ZERO = O0;

3;

5-84 Network Interprocess Communication

TYPE

{}

{ WARNING: If this program is ported to the 800 you need to delete
{ this type declaration. HP-PA Pascal pre-defines this type.

{}

ShortInt = -32768..32767;

{ WARNING: the bits entry of this record is not portable.
{ The declaration is 1..32 on the 1000, and 0..63 on the 800.
BitMapType = RECORD

CASE Integer OF

1: (bits PACKED ARRAY[1..32] OF Boolean);
2: (longint Integer);

3: (ints ARRAY[1..2] OF ShortInt);

END;

byte = 0..255;

byte array type = packed array [1..8] of byte;

buffer type = packed array [1..BUFFERLEN] of char;
InfoBufType = packed array [1..INFOBUFLEN] of char;
name of call array type = packed array [1..10] of char;
name_array type = packed array [1..7] of char;

VAR

buffer len Integer;
call name name of call array type;
call sd Integer;
control value ShortInt;
data_ buf InfoBufType;
dummy len Integer;
dummy parm Integer;
error return Integer;
flags array integer;
node_ name Buffer Type;
node name_ len Integer;
opt_data ShortInt;
opt num_ arguments ShortInt;
option byte array type;
protoaddr ShortInt;
protocol kind Integer;

req name_len Integer;
requested name Buffer Type;
short error ShortInt;
socket kind Integer;
temp position ShortInt;
timeout Integer;
timeout len Integer;
ve_sd Integer;

Network Interprocess Communication

5-85

STITLE 'IPC Procedures’, PAGE $
PROCEDURE ADDOPT
(VAR opt byte array type;
argnum ShortInt;
optcode ShortInt;
data_len ShortInt;
VAR data ShortInt;
VAR error ShortInt) ;
EXTERNAL;

PROCEDURE INITOPT

(VAR opt byte array type;
num_args ShortInt;

VAR error ShortInt) ;

EXTERNAL;

PROCEDURE IPCConnect

(

call sd Integer;
pathdesc Integer;
VAR flags Integer;
VAR opt Byte array type;
VAR vc_sd Integer;
VAR error Integer) ;
EXTERNAL;

PROCEDURE IPCControl

(

socket integer;

request integer;
VAR wrtdata ShortInt;

wrtlen Integer;
VAR data Integer;
VAR datalen Integer;
VAR flags Integer;
VAR result Integer);
EXTERNAL;

PROCEDURE IPCCREATE

(socket integer;
protocol integer;

VAR flags integer;

VAR opt byte array type;

VAR csd integer;

VAR result integer) ;

EXTERNAL;

PROCEDURE TIPCNAME

(descriptor integer;

VAR name name_ array type;
nlen integer;

VAR result integer) ;

EXTERNAL;

5-86 Network Interprocess Communication

PROCEDURE IPCDEST
(sock_kind : Integer;

VAR node name : Buffer Type;

name_len : Integer;
protocol : Integer;
VAR protoaddr : ShortInt;
proto_len : Integer;

VAR flags : integer;

VAR opt : byte array type;
VAR pathdesc : Integer;

VAR result : Integer) ;
EXTERNAL;

PROCEDURE IPCRECVCN

(csd : integer;
VAR vcsd : integer;
VAR flags : integer;
VAR opt : byte array type;

VAR result : integer) ;
EXTERNAL;

PROCEDURE IPCRECV

(csd :integer;
VAR data : InfoBufType;
VAR dlen : integer;

VAR flags : integer;

VAR opt : byte array type;

VAR result : integer) ;
EXTERNAL;

PROCEDURE IPCSelect
(VAR sbound : Integer;

VAR rmap : BitMapType;
VAR wmap : BitMapType;
VAR xmap : BitMapType;

timeout: Integer;
VAR result : Integer);
EXTERNAL;

PROCEDURE IPCSEND

(vecsd : integer;

VAR data : buffer type;
dlen : integer;

VAR flags : integer;

VAR opt : byte array type;

VAR result : integer) ;
EXTERNAL;

PROCEDURE IPCSHUTDOWN

(vecsd : integer;
VAR flags : integer;
VAR opt : byte array type;

VAR result : integer) ;
EXTERNAL;

Network Interprocess Communication

5-87

S TITLE ’'Internal Procedures’, PAGE $

PROCEDURE GetLen

(VAR buffer : Buffer Type;

VAR current pos : ShortInt;

VAR length : Integer);
FORWARD;

{ Get the length of a string. Return the next position

PROCEDURE Error Routine

(VAR where : name of call array type;
what : integer;
sd : integer) ;

FORWARD;

PROCEDURE Initialize Option

(VAR opt parameter : byte array type);
FORWARD;

PROCEDURE SetUp;
FORWARD

{ Create a call socket, connect to server using IPCDest

PROCEDURE ShutdownSockets;
FORWARD;
{ Shut down the call and vc sockets }

$ TITLE ’'Error Routine’, PAGE $
PROCEDURE Error Routine

(VAR where : name of call array type;

what : integer;

sd : integer) ;
BEGIN { Error Routine }
writeln(’Client: Error occurred in ', where,’ call.’);
writeln(’Client: The error code is: ', what:5,

. The local descriptor is: ’, sd:4);

GOTO 89;
END; { Error Routine }

$ TITLE 'GetLen’, PAGE $
PROCEDURE GetLen

(VAR buffer : Buffer Type;
VAR current pos : ShortInt;
VAR length : Integer);

{ Get the length of a string. Return the next position }

VAR
orig pos : ShortInt;

5-88 Network Interprocess Communication

BEGIN { GetLen }

{1

{ Find the first blank in the string. Return the difference
{ between the blank position, and the initial value of current pos
{1

orig pos := current pos;
WHILE buffer[current pos] <> ' ’ DO
current pos := current pos + 1;

{ set the length value for the caller }
length := current pos - orig pos;

{ increment beyond the space, for the next time }

current pos := current pos + 1;
END; { GetLen }
$ TITLE ’'Initialize Option ', PAGE $

PROCEDURE Initialize Option
(VAR opt parameter : byte array type);

VAR
opt num arguments : ShortInt;
result : ShortlInt;

BEGIN {Initialize Option}

opt num arguments := 0;
INITOPT (opt parameter,opt num arguments,result);
IF result <> ZERO THEN

BEGIN { error on initopt }

call name := ’'INITOPT "

Error Routine(call name, result, 0);

END; { error on initopt }

END; {Initialize Option}
$ TITLE ’'SetUp’, PAGE $
PROCEDURE SetUp;

{ Create a call socket using a well-known address }

VAR
pathdesc : Integer;

BEGIN { setup }
{ Prepare to create a call socket }

socket kind := CALL SOCKET;
protocol kind := TCP;

Network Interprocess Communication 5-89

{ clear the flags and option arrays }
flags array := 0;
Initialize Option(option);

{}

{A call socket is created by calling IPCCREATE. The value returned
{in the call sd parameter will be used in the following calls.

{1

IPCCREATE (socket kind, protocol kind, flags array, option,
call sd, error return);

IF error return <> ZERO THEN

BEGIN

call name := 'IPCCREATE ';

Error Routine(call name,error return, call sd);
END;

}

{
{ The server is waiting on a well-known address. Get the path
{ descriptor for the socket from the remote node.

{}

flags array := 0;

protoaddr := PROTO ADDR;

IPCDest (socket kind, node name, node name len, protocol kind,
protoaddr, INTEGER LEN, flags array, option,
pathdesc, error return);

IF error return <> ZERO THEN

BEGIN
call name := ’'IPCDEST "
Error Routine(call name,error return, pathdesc);
END;
flags array := 0;

{ Now connect to the server }

IPCConnect (call sd, pathdesc, flags array, option,
vc_sd, error return);

IF error return <> ZERO THEN

BEGIN

call name := 'IPCCONNECT’;

Error Routine(call name,error return, pathdesc);
END;

{ set the timeout to infinity with IPCControl for later calls }

flags array := 0;
control value := 0;
timeout len := 2;

IPCControl (vc_sd, CHANGE TIMEOUT, control value, timeout len,
dummy parm, dummy len, flags array, error return);

5-90 Network Interprocess Communication

IF error return <> ZERO THEN

BEGIN
call name := 'IPCCONTROL’ ;
Error Routine(call name,error return, vc_sd);
END;
flags array := 0;

Initialize Option(option);

{1
{ Verify the server received the connect req. Wait for the
{ server to do an IPCRecvCn.
{}
IPCRecv(vc_sd, data buf, buffer len, flags array,
option, error return);

IF error return <> ZERO THEN

BEGIN

call name := 'IPCRECV "

Error Routine(call name,error return, vc_sd);

END;

END; { setup }

S TITLE ’'ShutdownSockets’, PAGE $
PROCEDURE ShutdownSockets;

VAR
result : Integer;

BEGIN { ShutdownSockets }

{1

{ We are terminating this program. Clean up the allocated
{ sockets.

{}
flags array := 0;
Initialize Option(option);

IPCShutdown (vc_sd, flags array, option, result);
{ Don’t worry about errors here, since there isn’t much we can do. }

IPCShutdown(call sd, flags array, option, result);
{ Don’t worry about errors here, since there isn’t much we can do. }

END; { ShutdownSockets }

$TITLE ’'Client MAIN’, PAGE $
BEGIN { Client }

node name len := 0;
requested name := '’;

{ Ask the user for the NS node name of the remote node }

Prompt (‘Client: Enter the remote node name: ');
Readln(node name) ;

Network Interprocess Communication

5-91

temp position := 1;
GetLen(node name, temp position, node name len);

{ Create a call socket and connect to the server }
SetUp;

WHILE requested name <> ’'EOT’ DO
BEGIN { loop for name }

{ Ask the user for a name to be retrieved }

Prompt (‘Client: Enter name for data retrieval: ’);
Readln(requested name) ;

req name len := BUFFERLEN;

flags array := 0;

IF requested name <> ’'EOT’ THEN
BEGIN { continue processing }

{ Ask for the name the user requested }
IPCSend(vc_sd, requested name, req name len, flags array, option,
error return);

{ Block waiting for the response back from the server. }
buffer len := INFOBUFLEN;
flags array := 0;

IPCRecv (vc_sd, data buf, buffer len, flags array, option,
error return);
IF error return <> ZERO THEN

BEGIN { error on initopt }

call name := 'IPCRECV "

Error Routine(call name, error return, vc_sd);
END; { error on initopt }

{ Print out the data received }

Writeln(’'Client data is: ’, data buf);
END; { continue processing }
END; { loop for name }

89:

{ Clean up the call and vc sockets }
ShutDownSockets;
99:

END. { Client }

5-92 Network Interprocess Communication

Pascal/1000 Server NetlPC Program

SPASCAL ’91790-18264 REV.5010 <880420.0919>"

To show the operation of the IpcSelect() call.

REVISION HISTORY

$CDSS
{---—-----------r---—--—————— }
{}

{ NAME: SERVER

{ SOURCE: 91790-18264

{ RELOC: NONE

{ PGMR: LMS

{}

} —— }
{

{ PURPOSE

{

{

{

{

PROGRAM server (input, output);

LABEL
99;

CONST

ADDR OPT CODE = 128;
BUFFERLEN = 20;
CALL_SOCKET = 3;
CHANGE_BACKLOG =
CHANGE_TIMEOUT = 3;
FOREVER = TRUE;
INFINITE SELECT = -1;
INFOBUFLEN = 60;
INT16 LEN = 2;
LENGTH_OF DATA = 20;
MAX_ BACKLOG = 5;

MAX BUFF_SIZE = 1000;
MAX RCV_SIZE = 4;

MAX SEND SIZE = 3;
MAX SOCKETS = 32;
PROTO ADDR = 31767;
TCP = 4;

ZERO = O0;

Network Interprocess Communication 5-93

TYPE

{1

{ WARNING: If this program is ported to the 800 you need to delete
{ this type declaration. HP-PA Pascal pre-defines this type.
{}

ShortInt = -32768..32767;

{ WARNING: The bits entry of this record is not portable.
{ The declaration is 1..32 on the 1000, and 0..63 on the 840.
BitMapType = RECORD

CASE Integer OF

1: (bits : PACKED ARRAY[1..32] OF Boolean);
2: (longint : Packed Array[l..2] OF Integer);
3: (ints : ARRAY[1..4] OF ShortInt);

END;

byte = 0..255;

byte array type = packed array [1..40] of byte;

buffer type = packed array [1..BUFFERLEN] of char;
InfoBufType = packed array [1..INFOBUFLEN] of char;
name_ of call array type = packed array [1..10] of char;
name_array type = packed array [1..7] of char;

VAR
call name : name_of call array type;
call sd : integer;
control value : ShortInt;
curr_rmap : BitMapType;
curr_wmap : BitMapType;
curr_xmap : BitMapType;
dummy parm : Integer;
dummy len : Integer;
error return : Integer;
flags array : integer;
map_ offset : ShortInt;
opt_data : ShortiInt;
opt num_ arguments : ShortInt;
option : byte array type;
protoaddr : ShortInt;
protocol kind : Integer;
rmap : BitMapType;
sbound : Integer;
short error : ShortInt;
socket kind : Integer;
timeout : Integer;
timeout len : Integer;
vc_count : Integer;
xmap : BitMapType;

5-94 Network Interprocess Communication

STITLE 'IPC Procedures’, PAGE $

PROCEDURE ADDOPT

(VAR opt
argnum
optcode
data_ len

VAR data

VAR error

EXTERNAL;

PROCEDURE INITOPT

(VAR opt
num_args

VAR error

EXTERNAL;

PROCEDURE READOPT

(VAR opt
argnum

VAR optcode

VAR data len

VAR data

VAR error

EXTERNAL;

byte array type;
ShortInt;
ShortInt;
ShortInt;
ShortInt;
ShortInt) ;

byte array type;
ShortInt;
ShortInt) ;

byte array type;
ShortInt;
ShortInt;
ShortInt;
Integer;
ShortInt) ;

PROCEDURE IPCControl

(socket
request
VAR wrtdata
wrtlen
VAR data
VAR datalen
VAR flags
VAR result
EXTERNAL;

PROCEDURE IPCCREATE

(socket
protocol

VAR flags

VAR opt

VAR csd

VAR result

EXTERNAL;

PROCEDURE IPCNAME
(descriptor

VAR name
nlen

VAR result

EXTERNAL;

integer;
integer;
ShortInt;
Integer;
Integer;
Integer;
Integer;
Integer);

integer;
integer;
integer;
byte array type;
integer;
integer) ;

integer;
name_ array type;
integer;
integer) ;

Network Interprocess Communication

5-95

PROCEDURE IPCRECVCN

(csd : integer;

VAR vcsd : integer;

VAR flags : integer;

VAR opt : byte array type;
VAR result : integer) ;
EXTERNAL;

PROCEDURE IPCRECV

(csd :integer;

VAR data : buffer type;

VAR dlen : integer;

VAR flags : integer;

VAR opt : byte array type;
VAR result : integer) ;
EXTERNAL;

PROCEDURE IPCSelect
(VAR sbound : Integer;

VAR rmap : BitMapType;
VAR wmap : BitMapType;
VAR xmap : BitMapType;

timeout: Integer;
VAR result : Integer);
EXTERNAL;

PROCEDURE IPCSEND

(vecsd : integer;

VAR data : InfoBufType;
dlen : integer;

VAR flags : integer;

VAR opt : byte array type;

VAR result : integer) ;

EXTERNAL;

PROCEDURE IPCSHUTDOWN

(vecsd : integer;

VAR flags : integer;

VAR opt : byte array type;
VAR result : integer) ;
EXTERNAL;

S TITLE ’'Internal Procedures’, PAGE $

PROCEDURE Error Routine

(VAR where : name of call array type;
what : integer;
sd : integer) ;

FORWARD;

PROCEDURE HandleNewRequest;
FORWARD;
{ A new client wants to talk to us, complete the vc

5-96 Network Interprocess Communication

establishment }

PROCEDURE Initialize Option
(VAR opt parameter : byte array type);
FORWARD;

PROCEDURE ProcessRead
(map offset : ShortInt);
FORWARD ;
{ Process the read that is waiting on a particular vc }

PROCEDURE ReadData

(VAR client buf : Buffer Type;
VAR output buf : InfoBufType) ;
FORWARD;

{ Read the data from the file, prepare for the IPCSend call. }

PROCEDURE SetUp;
FORWARD;
{ Create a call socket using a well-known address }

PROCEDURE ShutdownVC
(map offset : ShortInt);
FORWARD;
{ Shut down a vc that the client no longer needs }

$ TITLE ’'Error Routine’, PAGE $
PROCEDURE Error Routine

(VAR where : name of call array type;

what : integer;

sd : integer) ;
BEGIN { Error Routine }
writeln(’Server: Error occurred in ', where,’ call.’);
writeln(’Server: The error code is: ', what:5,

. The local descriptor is: ’, sd:4);

GOTO 99;
END; { Error Routine }

$ TITLE ’'HandleNewRequest’, PAGE $

PROCEDURE HandleNewRequest;

{ A new client wants to talk to us, complete the vc establishment }
VAR

result : Integer;
ve_sd : Integer;
BEGIN { HandleNewRequest }

Initialize Option(option);
flags array := 0;

Network Interprocess Communication 5-97

{ Accept the connection for this new vec. }
IPCRecvCn(call sd, vc_sd, flags array, option, result);
IF result <> ZERO THEN

BEGIN { error on ipcrecven }

call name := 'IPCRECVCN ' ;

Error Routine(call name,result, vc_sd);
END; { error on ipcrecven }

{ Increment the total number of active vcs for the server }
vc_count := vc _count + 1;

{ Now set the read and exception maps for this new vc }
rmap.bits[vc _sd] := TRUE;
xmap.bits [ve sd] TRUE;

{ set the timeout to infinity with IPCControl for later calls }

flags array := 0;
control value := 0;
timeout len := 2;

IPCControl (vc_sd, CHANGE TIMEOUT, control value, timeout len,
dummy parm, dummy len, flags array, error return);

IF error return <> ZERO THEN

BEGIN

call name := 'IPCCONTROL’;

Error Routine(call name,error return, vc_sd);
END;

{1

{ Check if we have reached the maximum number of sockets.
{ If so, disallow any new requests by clearing the exception
{ map for the call socket.

IF vc_count = MAX SOCKETS -1 THEN
BEGIN { reached socket limit }

xmap.bits[call sd] := FALSE;
END; { reached socket limit }

END; { HandleNewRequest }
$ TITLE ’'Initialize Option ', PAGE $

PROCEDURE Initialize Option
(VAR opt parameter : byte array type);

VAR
opt num arguments : ShortInt;
result : ShortlInt;

5-98 Network Interprocess Communication

BEGIN

opt num arguments := 0;
INITOPT (opt parameter,opt num arguments,result);
IF result <> ZERO THEN

BEGIN { error on initopt }

call name := ’'INITOPT "

Error Routine(call name, result, 0);
END; { error on initopt }

END; {Initialize Option}

S TITLE ’'ProcessRead’, PAGE $
PROCEDURE ProcessRead

(map offset : ShortInt);
{ Process the read that is waiting on a particular vc }
VAR

buffer len : Integer;

client buf : Buffer type;

data_ buf : InfoBufType;

result : Integer;

ve_sd : Integer;

BEGIN { ProcessRead }

{ There is a pending read on a vc. Do an IPCRecv on the vc }

flags array := 0;

Initialize Option(option);
vc_sd := map offset;

{ Get the name this client wants data for }
buffer len := BUFFERLEN;

IPCRecv(vc_sd, client buf, buffer len,
flags array, option, result);
IF result <> ZERO THEN

BEGIN { error on ipcrecv }

call name := 'IPCRECV ’;

Error Routine(call name,result,vc_sd);
END; { error on ipcrecv }

{ Get the data we need from the file to send to the client }
ReadData(client buf, data buf);
buffer len := INFOBUFLEN;

IPCSend(vc_sd, data buf, buffer len, flags array,
option, result);
IF result <> ZERO THEN

BEGIN { error on ipcsend }

call name := 'IPCSEND ';

Error Routine(call name,result,vc_sd);
END; { error on ipcsend }

Network Interprocess Communication 5-99

END; { ProcessRead }

S TITLE ’'ReadData’, PAGE $
PROCEDURE ReadData

(VAR client buf : Buffer Type;
VAR output buf : InfoBufType) ;

{ Read the data from the file, prepare for the IPCSend call. }

CONST
LAST REC = 4;
VAR
current_rec : ShortInt;
datafile : TEXT;
info buf : InfoBufType;
infofile : Buffer Type;
found : Boolean;
name_ buf : Buffer Type;
BEGIN { ReadData }
}
Open the file named “datafile”. Search until the last record

is found, or we match the user name the client wants.
If there is a match, retrieve the remaining data from the
file, and prepare to send it back.

L L R e e L

——

found := FALSE;
current rec := 1;
infofile := ’‘datafile’;

RESET (datafile, infofile);

WHILE (NOT found) AND (current rec <= LAST REC) DO
BEGIN { search the file }

READLN (datafile, name buf, info buf);

IF client buf = name buf THEN
BEGIN { found a match }
{}
{ Wwe found the name the client requested in the file.
{ set the flag to fall out of the while loop, and
{ get the buffer to be sent to the client.

{1

writeln(’'Server: ', client buf, ’ information found.’
found := TRUE;

output buf := info buf;

END; { found a match }

5-100 Network Interprocess Communication

If there is no match, return “name not found” to the client.

) i

{ increment to test the next record in the file }
current_rec := current_rec +1;

END; { search the file }

}

We’ve fallen out of the WHILE loop because there is a match,
or we reached the end of the file. Find out which one it is.

e R Ve P

}

IF NOT found THEN
BEGIN { didn’'t find the requested name }
{}
{ We didn’t find the data in the file. Put an error
{ message in the data buffer.

{1

writeln (’Server: ', client buf, ’ not in file.’);

output buf :=
"SERVER did not find the requested name in the datafile. "

END; { didn’t find the requested name }

END; { ReadData }

$ TITLE 'SetUp’, PAGE S
PROCEDURE SetUp;
{ Create a call socket using a well-known address }

BEGIN { setup }

{ set up the opt array for the two parms we will use }
opt num arguments := 2;
InitOpt (option, opt num arguments, short error);
IF short error <> ZERO THEN
BEGIN { error on initopt }
call name := 'InitOpt’;
error return := short error;
Error Routine(call name,error return,call sd);
END; { error on initopt }

{ Now add the option for the well-known address for the IPCCreate Call }
protoaddr := PROTO ADDR;

AddOpt (option, 0, ADDR OPT CODE, INT1l6 LEN, protoaddr, short error);
IF short error <> ZERO THEN

BEGIN { error on Addopt }

call name := 'AddOpt’;

error return := short error;

Error Routine(call name,error return,call sd);

END; { error on Addopt }

Network Interprocess Communication 5-101

{ Change the backlog queue to the maximum }
opt data := MAX BACKLOG;
AddOpt (option, 1, CHANGE BACKLOG, INT16 LEN, opt data, short error);
IF short error <> ZERO THEN
BEGIN { error on Addopt }
call name := 'AddOpt’;
error return := short error;
Error Routine(call name,error return,call sd);
END; { error on Addopt }

{ Prepare to create a call socket }
socket kind := CALL SOCKET;
protocol kind := TCP;

{ clear the flags array }
flags array := 0;

{}

{A call socket is created by calling IPCCREATE. The value returned
{in the call sd parameter will be used in the following calls.

{1

IPCCREATE (socket kind, protocol kind, flags array, option,
call sd, error return);

IF error return <> ZERO THEN

BEGIN

call name := 'IPCCREATE ';

Error Routine(call name,error return,call sd);
END;

{ Set the call sd timeout to infinity with IPCControl for later calls }

flags array := 0;
control value := 0;
timeout len := 2;

IPCControl(call sd, CHANGE TIMEOUT, control value, timeout len,
dummy parm, dummy len, flags array, error return);

IF error return <> ZERO THEN

BEGIN

call name := 'IPCCONTROL’;

Error Routine(call name,error return,call sd);
END;

{ Now set IPCSelect’s bit map for the call socket }
xmap.bits[call sd] := TRUE;

END; { setup }
$ TITLE ’'ShutdownVC’, PAGE $
PROCEDURE ShutdownVC

(map offset : ShortInt);
{ Shut down a vc that the client no longer needs }

5-102 Network Interprocess Communication

VAR

result : Integer;
ve_sd : Integer;
BEGIN { Shutdownvc }

{1

{ The client shut down the vc, or it has gone down due to a
{ Networking problem. Either way, merely accept the shutdown.

{}
flags array := 0;
Initialize Option(option);

vc_sd := map offset;

IPCShutdown (vc_sd, flags array, option, result);
{ Don’t worry about errors here, since there isn’t much we can do. }

{ Decrement the number of active vcs }
vc_count := vc _count -1;

{ Clear the read map and exception map bits for this vc }
rmap.bits[map offset] := FALSE;
xmap.bits [map offset] := FALSE;

}

{
{ Always set the exception map for the call socket. That way
{ we’ll be sure to re-enable new requests if we were at the

{ 1limit before this vc was shut down.

{}
xmap.bits[call sd] := TRUE;

END; { ShutdownvcC }

$TITLE ’'Server MAIN’, PAGE $
BEGIN { Server }

{ Create a call socket with a well known address for the clients to use.

SetUp;

——

Loop forever waiting to serve clients. If any new clients request
service, the exception map will be set on the call socket. If

a client asks for information, the read map will be set on the

vc socket for that client. When the client has received the data,
it will shut down the vc, and the vc socket will have the exception
map set. Handle each one of these cases in this loop.

If any other situations occur, exit out of the loop, and let the
NS clean up routines de-allocate the sockets for this server.

e R e R e)

——

WHILE FOREVER = TRUE DO
BEGIN { Forever Do }

Network Interprocess Communication

5-103

{}

{set the bit masks to check for all the vcs that we own.
{ The rmap & xmap variables are maintained by ProcessNewRequest
{ and ShutdownvcC.

{1

curr_rmap := Irmap;
curr_xmap := Xmap;

sbound := MAX SOCKETS;
timeout := INFINITE SELECT;

}

Do an exceptional select on the call socket, and on all vcs
we own. Do a read select on all the vc sockets.

e R Ve W

}

IPCSelect (sbound, curr rmap, curr wmap, CUurr_xmap,
timeout, error return);
IF error return <> ZERO THEN

BEGIN { select Error }

call name := 'IPCSELECT ';

Error Routine(call name,error return,call sd);
END; { select Error }

{ See if there are any clients requesting information }
IF (curr_rmap.longint[1l] <> 0) OR
(curr_rmap.longint [2] <> 0) THEN
BEGIN { Process read on VC sockets }

{ We have someone to service. Find out who it is. }
FOR map_offset := 1 TO MAX SOCKETS DO
BEGIN { check all ves }

IF curr rmap.bits[map offset] = TRUE THEN
BEGIN { have read on a vc }

{1

{ We know the client who needs service,
{ Do an IPCRecv, get the necessary data,
{ and do an IPCSend to send it back.

{1

ProcessRead(map offset);

END; { have read on a vc }
END; { check all ves }
END; { Process read on VC sockets }

{ See if any clients have sent a message to the call socket }
IF curr xmap.bits[call sd] = TRUE THEN
BEGIN { new request on the call socket }

}

{ We have a new client, go do an IPCRecvCn, and set the
{ bit masks to accept reads and exceptions on the new vc.

5-104 Network Interprocess Communication

{1

HandleNewRequest;
{ Clear the call socket xmap bit to simplify the test for the vcs }
curr_xmap.bits[call sd] := FALSE;
END; { new request on the call socket }
{}
{ If we get an exception on a vc socket, shut it down. The client
{ knows to shut down a socket once it has received the data it needs.
{
I

}
F (curr xmap.longint[1] <> 0) OR (curr xmap.longint[2] <> 0) THEN
BEGIN { check for errors on vc sockets }

{ One vc had an exception, find out which one }

FOR map_ offset := 1 TO MAX SOCKETS DO
BEGIN { check all ves }
IF curr xmap.bits[map offset] = TRUE THEN
BEGIN { shut down the vc }

{}

{ Do an IPCShutdown on the vc, and clear

{ its bit in both the read and exception maps.
{

S

}

hutdownVC(map offset);

END; { shut down the vc }
END; { check all ves }
END; { check for errors on vc sockets }

END; { Forever Do }

99:

We have some problem, the NS cleanup routine will shut down
all the sockets we own once the program has terminated.

e Y Yan s W

}

END. { Server }

Network Interprocess Communication 5-105

NetIPC Program Data Example

Mickey Mouse Lives at Disneyland, and goes steady with Minnie.

Donald Duck Has three nephews: Huey, Dewey, and Louie.

Snow White & the 7 dwarfs: Sleepy, Dopey, Grumpy, Sneezy, Bashful,etc
Peter Pan Loves to fly around the sky with his friend Tinkerbell.

datafile 91790-17084 rev.5010 <880419.1522>
{ NAME: DATAFILE
SOURCE: 91790-17084
RELOC: NONE
PGMR: LMS

The data portion of this file (from the first line to the
comments at the end) MUST remain in its present format!

All names and places listed above are trademarks of Walt Disney

{
{
{
{
{ This is the data file used by SERVER.FTN and SERVER.PAS
{
{
{
{
{ Productions.

—_
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

—

5-106 Network Interprocess Communication

FORTRAN 77 Client NetlPC Program

FITN77,L
Scds on
Sfiles(1,1)

[oNONONONOINONOINONONS!

(@!

[oNONONONOINONOINONONS!

(@}

PROGRAM client(4,99),91790-18265 REV.5010 <880901.1020>

NAME: CLIENT
SOURCE: 91790-18265
RELOC: NONE

PGMR: KB

This program is the peer process to server. It requests a
connection with server and exchanges messages in synchronous mode.
The server can be located at an HP 9000 Series 800, HP 1000,

or HP 3000 node.

IMPLICIT None

VARIABLE DECLARATIONS:

The variable declarations for each NetIPC call are separated for
clarity. However, declarations for variables which have been
declared for previous calls are commented out. The purpose of
this is to demonstrate the complete set of declarations needed for
each NetIPC call.

Two exclamation points (!!) next to a variable name indicates that
its value may be changed by the call.

INITOPT:

INTEGER*2 options(14) !! INITOPT initializes the options parameter so
INTEGER*2 optnumargs ! that ’'optnumargs’ arguments can be added.
INTEGER*2 error !'l REFER TO 'OPT PARAMETERS’ SECTION OF THE

! NETIPC REFERENCE MANUAL FOR IMPORTANT INFO

! REGARDING options BYTE ARRAY LENGTH!!!

IPCCREATE:

INTEGER*4 socketkind
INTEGER*4 protocol
INTEGER*4 flags
INTEGER*2 options (14)
INTEGER*4 calldesc !
INTEGER*4 resultcode !

IPCCREATE creates a call socket descriptor
using the options prepared by ADDOPT.
"Calldesc’ will reference the socket.
"Socketkind’ must be 3 to mean call socket.
Protocol of 4 specifies the TCP protocol.
Other socket kinds, protocols, and use of the
! flags parameter are reserved for future use.

IPCDEST:

INTEGER*4 socketkind ! IPCDEST obtains a path report descriptor,

INTEGER*2 nodename (48) ! pathdesc, by specifying a protocol address
INTEGER*4 nodelen ! in the protoaddr parameter. This is an
|

INTEGER*4 protocol ! alternative to using IPCLOOKUP and IPCNAME
INTEGER*2 protoaddr ! but IPCDEST is a local call. That is, the
INTEGER*4 protolen ! IPCDEST does not verify that the remote end-
INTEGER*4 flags ! point described by the input parameters

Network Interprocess Communication 5-107

c INTEGER*2 options (14) ! exists. This checking is done when the

INTEGER*4 pathdesc I'l pathdesc is used for the first time. See

c INTEGER*4 resultcode !! the IPCDEST section of the manual for more.

c

c IPCCONNECT:

c INTEGER*4 calldesc ! IPCCONNECT initiates a wvirtual circuit on

c INTEGER*4 pathdesc ! which data may be sent and received.

c INTEGER*4 flags ! IPCCONNECT takes a call desc and a path desc,

c INTEGER*2 options(14) ! and creates a virtual circuit referenced by
INTEGER*4 vcdesc 'l vedesc.

C INTEGER*4 resultcode !!

c

c IPCCONTROL:

INTEGER*4 descriptor ! IPCCONTROL performs specialized requests
INTEGER*4 request ! on sockets. The socket and request are
INTEGER*2 wrtdata ! specified by ’‘descriptor’ and ’'request’,
INTEGER*4 wlen ! respectively. Use of the other parameters
INTEGER*2 readdata 1l will vary depending on ’‘request’. Please
INTEGER*4 rlen 'l refer to the IPCCONTROL section of the

C INTEGER*4 flags ! Reference Manual for further IMPORTANT

c INTEGER*4 resultcode !! information.

c

c IPCSEND:

C INTEGER*4 vcdesc ! IPCSEND sends data buffer ’'senddata’ of
INTEGER*2 senddata(10) ! length ’'dlength’ over the VC connection.
INTEGER*4 dlength ! Here, we will use 20 byte data buffers.

c INTEGER*4 flags ! Refer to the reference manual for discussion

C INTEGER*2 options(14) ! of the flags and options parameters with

C INTEGER*4 resultcode ! this call.

c

c IPCRECV:

c INTEGER*4 vcdesc ! IPCRECV receives data from the VC connection
INTEGER*2 recvdata(30) ! and stores it in ’'recvdata’. Here, we use

c INTEGER*4 dlength ! 60 byte data buffers. Refer to the reference

C INTEGER*4 flags ! for discussion of the flags and options

c INTEGER*2 options(14) ! parameters with this call.

C INTEGER*4 resultcode !

c

CHARACTER BLANK*1, EOT*3
CHARACTER buffer*20

CHARACTER*11 this_call
C FOR GETST CALL:

INTEGER*2 maxlen

INTEGER*2 tlog

INTEGER*2 1 ! counter

EQUIVALENCE (buffer, senddata)

5-108 Network Interprocess Communication

NN NA

NN NNOAN

NN

DATA BLANK/’ '/, EOT/'EOT'/
DATA socketkind/3/,protocol/4/,flags/0/

maxlen = -48

CALL GETST (nodename,maxlen, tlog)

IF (tlog .EQ. 0) THEN
WRITE (1,*) ’‘client : Usage: ru,client nodename’
STOP

ENDIF

INITOPT is called to initialize the option parameter used in the
IPCCREATE, IPCLOOKUP, IPCCONNECT, IPCRECV, IPCSEND and
IPCSHUTDOWN calls. By setting optnumargs to zero, the

option parameter is initialized to contain zero entries.

optnumargs = 0
error = 0
this call = 'INITOPT !

CALL INITOPT (options, optnumargs, error)
IF (resultcode .NE. 0) CALL OPT ERROR (error, this call)

A call socket is created by calling IPCCREATE. The value returned
in the calldesc parameter will be used in the following IPCCONNECT
call. The flags parameter is not used in this program so flags

is made a double integer and assigned the value zero to ensure that
all the bits are clear.

resultcode = 0

this call = 'IPCCREATE '/

CALL IPCCREATE (socketkind, protocol, flags,options,calldesc,

> resultcode)

IF (resultcode .NE. 0) CALL RESULT ERROR (resultcode, this call)

IPCDest obtains the path report des by using a well known TCP
address that the server has previously assigned to its call socket
using ADDOPT and IPCCREATE. Both the client and the server must
use the same address. Using IPCDest in this way is one way

to obtain a path report descriptor. Another way would be to
assign a character name to the call socket in the server program
using IPCName, and then to use IPCLookup in the client program

to find the get the path report descriptor. The two methods are
equivalent although both client and server must use the same one.

nodelen = tlog

protoaddr = 31767 1”well-known” address

protolen = 2

flags = 0

resultcode = 0

this call = 'IPCDEST !

CALL IPCDEST (socketkind,nodename,nodelen,protocol, protoaddr,
> protolen, flags,options,pathdesc, resultcode)

IF (resultcode .NE. 0) CALL RESULT ERROR (resultcode, this call)

Network Interprocess Communication

5-109

The calldesc returned by IPCCREATE and the pathdesc returned by
IPCLOOKUP are used in IPCCONNECT to request a connection with the
server.

The vcdesc returned by IPCCONNECT is used in subsequent

calls to reference the connection. Once this call has completed
successfully there is no longer a need for the call socket. Thus,
you may release the call socket descriptor by calling IPCSHUTDOWN
to return the resources to the system, or by calling IPCGive to
give the call socket descriptor to another process that uses IPCGet.
Releasing the call socket descriptor has no effect upon the VC
socket or its descriptor.

NOONOONOONCNNCNAN

flags = 0

resultcode = 0

this call = ’'IPCCONNECT ’

CALL IPCCONNECT (calldesc,pathdesc, flags,options,vcdesc, resultcode)
IF (resultcode .NE. 0) CALL RESULT ERROR (resultcode, this call)

c IPCControl is called in order to set the timeout to infinity. The
request of 3 means we are setting the timeout. A wrtdata of 0 means
C timeout is infinity.

(@}

descriptor = vcdesc

request = 3 ! timeout

wrtdata = 0 I infinite

wlen = 2

flags = 0

resultcode = 0

this call = ’'IPCCONTROL ’

CALL IPCCONTROL (vcdesc,request,wrtdata,wlen,readdata,rlen,
> flags, resultcode)

IF (resultcode .NE. 0) CALL RESULT ERROR (resultcode, this call)

c IPCRECV is called to determine if the connection has been
C established.
flags = 0

dlength = 60

resultcode = 0

this call = ’'IPCRECV !

CALL IPCRECV (vcdesc,recvdata,dlength, flags,options, resultcode)
IF (resultcode .NE. 0) CALL RESULT ERROR (resultcode, this call)

C Loop forever till user types in 'EOT’ in response to ENTER NAME:
C Client will then terminate itself and let the networking code
C clean up which will notify server via the exceptional condition
c on the appropriate VC socket.

DO WHILE (.TRUE.)
88 WRITE(1,*) ’'ENTER NAME: !

READ (1, ’(A20)’) buffer
IF (buffer .EQ. EOT) STOP
IF (buffer .EQ. BLANK) THEN
WRITE(1,*) 'Type EOT to terminate.’

5-110 Network Interprocess Communication

GO TO 88
END IF

C Data is sent to server on the newly established connection.

>

dlength = 20

flags = 0

resultcode = 0

this call = 'IPCSEND !

CALL IPCSEND (vcdesc, senddata,dlength, flags,options,
resultcode)

IF (resultcode .NE. 0) CALL RESULT ERROR (resultcode,

this call)

C The client calls IPCRECV to receive 60 bytes of data from server.

END

END

dlength = 60
flags = 0 ! Clear flags first, then
flags = IBSET(flags, (31-20)) ! set DATA WAIT flag [20] so that

| we are sure to get 60 bytes back.

resultcode = 0

this call = ’'IPCRECV#2 !

CALL IPCRECV (vcdesc,recvdata,dlength,flags,options,
resultcode)

IF (resultcode .NE. 0) CALL RESULT ERROR (resultcode,

this call)

WRITE (1, *) buffer,’ ’

WRITE(1,’ (30A2)’) (recvdata(i), i=1,30)

DO

! end of MAIN program

Network Interprocess Communication

5-111

CCCCCCCCCCrreeeceeeeeeecceeeeceecceeeecececceeececececceecececececceececcecececceeccececccececceccccececcecece

NN NOAN

SUBROUTINE OPT ERROR

OPT ERROR 1is called when ADDOPT or INITOPT returns with an error
condition (error .NE. 0).

NN NOAN

CCCCCCCCCCrreeeceeeeeeecceeeeeecceeeececececceeececececceecececececceececcecececcececcecececcececececceccececcecece

SUBROUTINE OPT ERROR (code, which_call)
INTEGER*2 code | error code returned from call
CHARACTER*11 which call ! call which produced error

WRITE (1, ("ERROR CODE RETURNED FROM ”,All)’) which call
WRITE(1,’ (“THE ERROR CODE WAS ”,I4)’) code

STOP

END ! end of OPT ERROR

CCCCCCCCCCrreeeceeeeeeecceeeeeecceeeeecececceeececececceecececececceececcecececcececcecececccececcecceccececcecece

N NNONAN

SUBROUTINE RESULT ERROR

RESULT ERROR is called when a NETIPC call returns with an error
condition (resultcode .NE. 0).

N NNONAN

CCCCCCCCCCrreeeceeeeeeecceeeeeecceeeececececceeececececceecececececceececcecececcececcecececcececececceccececcecece

5-112

SUBROUTINE RESULT ERROR (code, which_call)
INTEGER*4 code | error code returned from call
CHARACTER*11 which call ! call which produced error

WRITE (1, "’ ("ERROR CODE RETURNED FROM ”,All)’) which call
WRITE(1,’ (“THE ERROR CODE WAS ”,I4)’) code

STOP

END ! end of RESULT ERROR

Network Interprocess Communication

FORTRAN 77 Server NetlPC Program

This program is the peer process to requester.

server (4,99),91790-18266 REV.5010 <880420.1507>

It establishes a

connection with client upon client’s request and exchanges messages

FTN77,L
Scds on
Sfiles(1,1)
PROGRAM
c
C NAME: SERVER
c SOURCE: 91790-18266
C RELOC: NONE
C PGMR: KB
c
c
c
C in synchronous mode.
C Series 800,

[oHOHONONONONONS!

[oN@!

IMPLICIT None

VARIABLE DECLARATIONS:
The variable declarations for each NetIPC call are separated for

clarity.

However,

The requestor can be located at an HP 9000,
HP 1000 or HP 3000 node.

declarations for variables which have been
declared for previous calls are commented out.

The purpose of

this is to demonstrate the complete set of declaration needed for
each NetIPC call.

INITOPT:

INTEGER*2 options (24)
INTEGER*2 optnumargs
INTEGER*2 error

ADDOPT :
INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2

IPCCREATE:
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*2
INTEGER*4
INTEGER*4

options (24)
argnum
optioncode
dlength
data

error

socketkind
protocol
flags
options (24)
calldesc
resultcode

INITOPT initializes the options parameter so
that ’'optnumargs’ arguments can be added.
REFER TO ’'OPT PARAMETERS’ SECTION OF THE
NETIPC REFERENCE MANUAL FOR IMPORTANT INFO
REGARDING options BYTE ARRAY LENGTH!!!

ADDOPT adds an option to the
"Options’ can hold more than
"argnum’ specifies which one is being added.
"Optioncode’ says which type of option is to
be added, and ’data’ says what that option
is to be.

entity ’‘options’.
one option, so

IPCCREATE creates a call socket descriptor
using the options prepared by ADDOPT.
"Calldesc’ will reference the socket.
"Socketkind’ must be 3 to mean call socket.
Protocol of 4 specifies the TCP protocol.
Other socket kinds, protocols, and use of the
flags parameter are reserved for future use.

Network Interprocess Communication

5-113

c IPCCONTROL:
INTEGER*4 descriptor ! IPCCONTROL performs specialized requests
INTEGER*4 request ! on sockets. The socket and request are
INTEGER*2 wrtdata ! specified by ’'descriptor’ and ’'request’,
INTEGER*4 wlen ! respectively. Use of the other parameters
INTEGER*2 readdata ! will vary depending on ’‘request’. Please
INTEGER*4 rlen ! refer to the IPCCONTROL section of the

C INTEGER*4 flags ! Reference Manual for further IMPORTANT

c INTEGER*4 resultcode ! information.

c

c IPCSELECT:
INTEGER*4 sdbound ! IPCSELECT determines the status of a call
INTEGER*4 readmap ! socket or virtual circuit socket. The ’‘map’
INTEGER*4 writemap | parameters are bit maps which indicate
INTEGER*4 exceptionmap ! whether sockets are readable, writeable, or
INTEGER*4 timeout ! exceptional. PLEASE REFER TO THE REFERENCE

c INTEGER*4 resultcode ! MANUAL FOR DISCUSSION OF THESE TOPICS!

c

c IPCSHUTDOWN :

c INTEGER*4 descriptor ! IPCSHUTDOWN shuts down a socket and returns

C INTEGER*4 flags ! its resources to the system. PLEASE REFER

c INTEGER*2 options (24) ! TO '"SHUTTING DOWN A CONNECTION’ IN THE

c INTEGER*4 resultcode ! REFERENCE MANUAL!

c

c OTHER VARIABLES & CONSTANTS:
INTEGER*2 MAX BACKLOG ! Maximum number of pending connection requests
INTEGER*4 MAX DESC ! Maximum number of sockets allowed at one time.
INTEGER*2 active vc ! Number of active virtual circuit connections.
CHARACTER*8 FNAME ! Name of datafile from which to read data

CHARACTER*11 this call ! Name of last NetIPC call used. This is for
! identifying where errors occur.

INTEGER*4 current rmap ! current readmap
COMMON MAX DESC

C CONSTANT VALUES ASSIGNED:
DATA socketkind/3/,protocol/4/,flags/0/
DATA MAX BACKLOG/5/

DATA FNAME/'DATAFILE’/
DATA MAX DESC/32/

5-114 Network Interprocess Communication

CCCCCCCCCCrreeeceeeeeeecceeeeceecceeeecececceeececececceecececececceececcecececceeccececccececceccccececcecece

C C
C BEGIN MAIN PROGRAM SERVER: c
C C

CCCCCCCCCCrreeeceeeeeeecceeeeeecceeeecececceeececececceecececececceececcecececcececcecececccececceccccececcecece

C Open database file needed to service clients:
error = 0
this call = ’OPEN '
OPEN (77,FILE=FNAME, IOSTAT=error,USE='EXCLUSIVE’ ,6 STATUS='UNKNOWN')
IF (error .NE. 0) CALL OPT ERROR (error,this call)

C Initialize options to contain 2 parameters:

optnumargs = 2 ! We will assign 2 args: TCP address & max backlog.
error = 0 ! Reset the error code.
this call = ’INITOPT !

call INITOPT (options, optnumargs, error)
IF (error .NE. 0) CALL OPT ERROR (error, this call)

C Assign an option to ADDOPT to give a TCP address to the call socket
C during the IPCCREATE call.

argnum = 0 ! This is the first argument we are assigning.
optioncode = 128 Option 128 means “assign a TCP address”.
dlength = 2 A TCP address is two bytes long.

data = 31767 We will assign TCP address of 31767.

error = 0 ! Reset the error code.

this call = 'ADDOPT !

CALL ADDOPT (options, argnum, optioncode, dlength, data, error)

IF (error .NE. 0) CALL OPT ERROR (error, this call)

C Assign an option to ADDOPT to set maximum request backlog to 5
C during the IPCCREATE call.

argnum = 1
optioncode = 6
dlength = 2

This is the second argument we are assigning.
Option 6 means “set the maximum backlog”.

1
1
! Data is two bytes long.
!

data = 5 We will set maximum backlog to 5.
error = 0 ! Reset the error code.
this call = 'ADDOPT !

CALL ADDOPT (options, argnum, optioncode, dlength, data, error)
IF (error .NE. 0) CALL OPT ERROR (error, this call)

C Create a call socket by calling IPCCREATE. In the variable declarations
C and initializations, we specified a call socket with the TCP protocol and
C we set ‘flags’ to zero since it is not used here.

resultcode = 0 | Reset the result code.

this_call = ' IPCCREATE !

CALL IPCCREATE (socketkind, protocol, flags,options,calldesc,
> resultcode)

IF (resultcode .NE. 0) CALL RESULT ERROR (resultcode, this call)

Network Interprocess Communication 5-115

C Call IPCCONTROL to set the synchronous timeout to infinity.

C This is so that the server will wait indefinitely for a client

C to make a request.
descriptor = calldesc I We will set the call socket timeout.
request = 3 ! Request of 3 is “set synchronous timeout”.
wrtdata = 0 ! Set timeout to 0, which means infinity, not 0.
wlen = 2 Wrtdata is 2 bytes long.

c readdata Reserved for future use: value unimportant.

!
!
C rlen ! Reserved for future use: value unimportant.
!
!

flags = 0 Reserved for future use but must be zero.
resultcode = 0 Reset the result code.

this call = ’'IPCCONTROL

CALL IPCCONTROL (descriptor,request,wrtdata,wlen,readdata,rlen,

> flags, resultcode)

IF (resultcode .NE. 0) CALL RESULT ERROR (resultcode, this call)

C In preparation to start monitoring the call sockets for incoming requests,
C set the bit mask to receive connection(s) on the newly allocated call
C socket. PLEASE SEE THE IPCSELECT SECTION OF THE REFERENCE MANUAL FOR
C IMPORTANT INFORMATION ABOUT IPCSELECT BIT MASKS.
exceptionmap = 0
exceptionmap = ibset (exceptionmap, (MAX DESC - calldesc))
C Check the call socket descriptors to see which ones are exceptional.
C Exceptional call sockets already have connection requests queued on
C them. The other sockets are readable. IPCSELECT has an infinite
C timeout, so it will block until a connection request is received
C or until data is received over a VC connection. After IPCSELECT
C returns, we will process the data received, or the connection request.
sdbound = MAX DESC ! Maximum number of descriptors.
timeout = -1 ! Infinite timeout so IPCSELECT will block.
writemap = 0 ! Clear writemap bits.
readmap = 0 ! Clear readmap bits to receive connection
! on newly established VC connections.
current rmap = 0 ! Clear the current readmap.
active ve =1 ! The first active VC will be number 1.
DO WHILE (.TRUE.) ! Forever loop.
resultcode = 0 ! Reset result code.
this call = 'IPCSELECT '/
CALL IPCSELECT (sdbound, readmap,writemap, exceptionmap, timeout,
> resultcode)
IF (resultcode .NE. 0) CALL RESULT ERROR (resultcode,this call)
C A bit in the readmap is set when there is VC data to read.

IF (readmap .NE. 0) CALL PROCESS DATA (readmap, exceptionmap)

5-116 Network Interprocess Communication

c A bit in the exceptionmap is set when a connection request is

c detected,

(exceptionmap .NE.
exceptionmap,

= MAX DESC

IF

sdbound

writemap = 0

readmap
exceptionmap =
(active vc
exceptionmap
END TIF

IF

END DO

END !

or when a VC shutdown is detected.

0) CALL PROCESS XMAP (calldesc,
active vc, current rmap)

Reset sdbound since IPCSELECT changes it.
Reset writemap since IPCSELECT changes it.
= current_rmap

current rmap
.LT. MAX DESC)
IBSET (exceptionmap,

THEN
(MAX DESC - calldesc))

END OF MAIN PROGRAM

CCCCCCCCCCrreeeceeeeeeecceeeeececceeeeceecceeececececceecececececceececcecececcececcecececcececececceccececcecece

set.

NOONONOCONONA

SUBROUTINE PROCESS XMAP

following occurs:
1.

case,

c

c

PROCESS XMAP is called from MAIN when a bit of the exceptionmap is C
A bit in the exceptionmap will be set when either of the c

c

There is a connection request. In this case, the C

bit which is set corresponds to a call socket. C

A virtual circuit connection shuts down. In this C

c

c

the bit which is set corresponds to a VC socket.

CCCCCCCCCCrreeeceeeeeeecceeeeeecceeeececececceeececececceecececececceececcecececcececcecececcececececceccececcecece

SUBROUTINE PROCESS XMAP

>

IMPLICIT none

c INITOPT:
INTEGER*2
INTEGER*2
INTEGER*2

c IPCRECVCN:
INTEGER*4
INTEGER*4
INTEGER*4

c INTEGER*2
INTEGER*4

INTEGER*2

INTEGER*4

INTEGER*4

options (24)
optnumargs
error

calldesc
vcdesc
flags
options (24)
resultcode

active vc
MAX_ DESC

VC_DESC

(calldesc,

exceptionmap,

active vc, current rmap)

INITOPT initializes the options parameter so
that ’'optnumargs’ arguments can be added.
REFER TO ’'OPT PARAMETERS’ SECTION OF THE
NETIPC REFERENCE MANUAL FOR IMPORTANT INFO
REGARDING options BYTE ARRAY LENGTH!!!

The rule is: array len=4+8*optnumargs+data

IPCRECVCN receives a connection request on

the call socket specified by calldesc,

returns a virtual circuit descriptor, vcdesc
which refers to the VC created. Here, options
can be specified to alter the max send and
receive sizes for the VC connection.

the ordinal number of the active VC.
the maximum number of descriptors

the current descriptor

Network Interprocess Communication 5-117

CHARACTER*11 this call !
INTEGER*4 current rmap !

INTEGER*4 exceptionmap !

name of IPC call that may have an error.
current readmap

has bits set for aborted connections and

! connection requests

COMMON MAX DESC

C Reset the options array to 0 so IPCRECVCN and IPCSHUTDOWN don'’t complain.
optnumargs = 0
error = 0
this call = 'INITOPT !
CALL INITOPT (options, optnumargs, error)
IF (error .NE. 0) CALL OPT ERROR (error, this call)
C Find out if there are any connection requests by examining the
C exceptionmap.
IF (BTEST (exceptionmap, (MAX DESC - calldesc))) THEN
C A new connection has been requested.
flags = 0 ! reset flags array
resultcode = 0
this call = 'IPCRECVCN
CALL IPCRECVCN (calldesc, vcdesc, flags, options, resultcode)
IF (resultcode .NE. 0) CALL RESULT ERROR(resultcode, this call)
active vc = active vc + 1
c Now set the read bit for the VC and clear the calldesc exception bit.
current rmap = IBSET (current rmap, (MAX DESC - vcdesc))
exceptionmap = IBCLR(exceptionmap, (MAX DESC - calldesc))
END TIF
C Find out if VC sockets are exceptional (connections aborted).

C If so, shut down socket and update readmap for next IPCSELECT call.
VC _DESC = 0
exceptionmap = IBCLR(exceptionmap, (MAX DESC - calldesc))
DO WHILE ((exceptionmap .NE. 0) .AND. (VC _DESC .LT. MAX DESC))
IF (BTEST (exceptionmap, (MAX DESC - VC DESC))) THEN
flags = 0
resultcode = 0
this call = ’'IPCSHUTDOWN’
CALL IPCSHUTDOWN (VC _DESC, flags, options, resultcode)
IF (resultcode .NE. 0) CALL RESULT ERROR (resultcode,
> this call)
active vc = active vc - 1
exceptionmap = IBCLR(exceptionmap, (MAX DESC - VC DESC))
current rmap = IBCLR(current rmap, (MAX DESC - VC DESC))
END TIF
VC_DESC = VC_DESC + 1
END DO
END ! end of subroutine PROCESS XMAP
5-118 Network Interprocess Communication

CCCCCCCCCCrreeeceeeeeeecceeeeceecceeeecececceeececececceecececececceececcecececceeccececccececceccccececcecece

N NOQONOAN

SUBROUTINE PROCESS DATA
PROCESS DATA is called from MAIN when a bit of the readmap is set.

A bit in the read map is set when a VC socket becomes readable

has data queued on it).

(i.e.

N NOQONOAN

CCCCCCCCCCrreeeceeeeeeecceeeeeecceeeececececceeececececceecececececceececcecececcececcecececcececececceccececcecece

[olN@!

oINS NONONP!

SUBROUTINE PROCESS DATA

IMPLICIT

IPCSEND:
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*2
INTEGER*4

IPCRECV:
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*2
INTEGER*4

INITOPT:
INTEGER*2

INTEGER*2
INTEGER*2

INTEGER*2

INTEGER*4

INTEGER*4

INTEGER*4
INTEGER*4

CHARACTER*

CHARACTER*20 name requested !

CHARACTER*20 name in file

none

vcdesc

senddata (15)

dlength
flags
options (24)
resultcode

vcdesc
recvdata (5)
dlength
flags
options (24)
resultcode

options (24)
optnumargs
error

index
MAX DESC
VC_DESC

readmap
exceptionmap

11 this call

INTEGER*4 eof message(15)

COMMON MAX DESC

(readmap, exceptionmap)

IPCSEND sends data buffer ’'senddata’ of
length ’'dlength’ over the VC connection.
Here, we will use 60 byte data buffers.
Refer to the reference manual for discussion
of the flags and options parameters with
this call.

IPCRECV receives data from the VC connection
and stores it in ’'recvdata’. Here, we use

20 byte data buffers. Refer to the reference
for discussion of the flags and options
parameters with this call.

INITOPT initializes the options parameter so
that ’'optnumargs’ arguments can be added.
REFER TO ’'OPT PARAMETERS’ SECTION OF THE
NETIPC REFERENCE MANUAL FOR IMPORTANT INFO
REGARDING options BYTE ARRAY LENGTH!!!

counter
the maximum number of descriptors
the current VC descriptor

read map bit array,
exceptionmap bit array,

indicates readability.
indicates errors.

name of IPC call that may have an error.
client’s request
! name in data file

! name not found in data file message.

Network Interprocess Communication

5-119

EQUIVALENCE (recvdata, name requested)
DATA eof message/’does not appear in data file’/
C Reset the options array to 0 so IPCRECVCN and IPCSHUTDOWN don'’t complain.

optnumargs = 0

error = 0

this call = ’INITOPT !

CALL INITOPT (options, optnumargs, error)

IF (error .NE. 0) CALL OPT ERROR (error, this call)

VC _DESC = 0
DO WHILE ((readmap .NE. 0) .AND. (VC DESC .LT. MAX DESC))

IF (BTEST (readmap, (MAX DESC - VC DESC)) .AND.
> .NOT. BTEST (exceptionmap, (MAX DESC - VC DESC))) THEN
C A socket is readable, and there is no error (exception). Get the request.
flags = 0 ! Clear flag, then
flags = IBSET(flags,31-20) ! Set DATA WAIT flag [20] to be

I sure to get 20 bytes back.
dlength = 20
vcdesc = VC _DESC
resultcode = 0

this call = 'IPCRECV !

CALL IPCRECV (vcdesc, recvdata, dlength, flags, options,
> resultcode)

IF (resultcode .NE. 0) CALL RESULT ERROR (resultcode,
> this call)

readmap = IBCLR(readmap, (MAX DESC - VC _DESC))
C Now try to fill the request.
REWIND (77) ! Start at top of data file.
DO WHILE (.TRUE.) ! Check each line.
read (77, ' (A20, 15A4)'’, end=98) ! at EOF go to 98
> (name_in file, (senddata(index), index=1,15))
IF (name_requested .EQ. name_ in file) THEN
flags = 0
dlength = 60
resultcode = 0

this call = 'IPCSEND !

CALL IPCSEND (vcdesc, senddata, dlength, flags,
> options, resultcode)

IF (resultcode .NE. 0) CALL RESULT ERROR (resultcode,
> this call)

GOTO 88

END TIF
END DO

C Did not find the name in file, send eof message and try next request.
98 flags = 0

dlength = 60

resultcode = 0

this call = 'IPCSEND !
CALL IPCSEND (vcdesc, eof message, dlength, flags, options,
> resultcode)

5-120 Network Interprocess Communication

88

IF (resultcode .NE. 0) CALL RESULT ERROR (resultcode,
this call)
END IF
VC_DESC = VC_DESC + 1
END DO
END ! end of subroutine PROCESS DATA

CCCCCCCCCCrreeeceeeeeeecceeeeeecceeeececececceeececececceecececececceececcecececcececcecececcececececceccececcecece

NN NOAN

SUBROUTINE OPT ERROR

OPT ERROR 1is called when ADDOPT or INITOPT returns with an error
condition (error .NE. 0).

NN NOAN

CCCCCCCCCCrreeeceeeeeeecceeeeececceeeecececceeececececceecececececceececcecececcececcecececccecececececceccececcecece

SUBROUTINE OPT ERROR (code, which call)

INTEGER*2 code ! error code returned from call
CHARACTER*11 which call ! call which produced error

WRITE(1,’ (“"SERVER: ERROR CODE RETURNED FROM ”,All)’) which call
WRITE(1,’ ("THE ERROR CODE WAS ”,I4)'’) code

STOP

END ! end of OPT ERROR

CCCCCCCCCCrreeeceeeeeeecceeeeeecceeeeceecceeececececceecececececceececcecececcececcecececccececceccccececcecece

NN NOAN

SUBROUTINE RESULT ERROR

RESULT ERROR 1is called when a NETIPC call returns with an error
condition (resultcode .NE. 0).

NN NOAN

CCCCCCCCCCrreeeceeeeeeecceeeeececceeeecececceeececececceecececececceececceccceccececcecececccececcecceccececcecece

SUBROUTINE RESULT ERROR (code, which call)

INTEGER*4 code ! error code returned from call
CHARACTER*11 which call ! call which produced error
WRITE (1, (“SERVER: ERROR CODE RETURNED FROM ”,All)’) which call
WRITE(1,’ ("THE ERROR CODE WAS ”,I4)'’) code

STOP

END ! end of RESULT ERROR

Network Interprocess Communication 5-121

NS-ARPA/1000 NetlPC Program Examples

The following programs illustrate the use of NetIPC calls in Pascal/1000 and FORTRAN 77.
DEXEC calls are used to start up the remote NetIPC program. You can replace the DEXEC calls
with RPM calls.

Pascal/1000 Example 1

$PASCAL ’91790-16236 REV.5240 <900208.1421>'
$CDS ON$

$CODE_CONSTANTS OFF$

$RUN STRING 80%

{}

{ NAME: IPC1

{ SOURCE: 91790-18236
{ RELOC: 91790-16236
{ PGMR: VH

{

{

{

{

{

{

{ 900208 5020 BEB Changed the error code for shutdown from 65 to 64.
{ 910514 5240 VH Cleaned & Modified to take inputs from runstrings.
{

{

{

PROGRAM ipcl;

{}

{ DESCRIPTION:

This program illustrates the use of IPCCreate, IPCName, IPCControl,
IPCRcvcn, IPCRecv, IPCSend, and IPCShutdown. Using IPCCreate, the
program creates a socket and names it <my socket name> as retrieved
from the runstring using IPCName. IPCCreate automatically creates
a socket in synchronous mode with a default timeout of 60 seconds.
The program then calls IPCRecvcn to wait to receive a connection
request from a peer program.

The peer program will be invoked with the name of the node where this
program is running and its socket’s name. Once the connection is
established, the peer program sends a data message and a shutdown
message. This program uses IPCRecv to receive the messages and upon
receiving the shutdown message it calls IPCSend to send the shutdown
message back to its peer. IPCShutdown is then called to shutdown the
connection.

USAGE:
ipcl <my socket namex>

e e e a n L e Taa P e P

5-122 Network Interprocess Communication

{ my socket name:

the name of the socket created by ipcl.

LABEL

99;
e -—slilaA A A-L)
{ Constant Definitions }
T — }
CONST

PROGNAME =’ipcl’;

ZERO = 0;

LENGTH_OF DATA = 20;

TIMEOUT = 59;

SHUTDOWN = 64; { Connection Shutdown }

CALL_SOCKET = 3; { IPC call socket }

TCP = 4; { TCP Protocol number }

MAX SOCKET_NAME = 16; { Maximum length of socket name }
., ke E brL,)
{ Type Definitions }
e — }
TYPE

Intlée = -32768..32767;

Byte = 0..255;

OptionType = PACKED Array [1..8] of Byte;

BufferType = PACKED Array [1..LENGTH OF DATA] of Char;

ReadDataType = PACKED Array [1..3] of Intls;

CallNameType = PACKED Array [1..15] of Char;

EnvStringType = PACKED Array [1..80] of Char;
T A-iR-:bZ)
{ Variable Declarations }
st }
VAR

screen : Text; {* output pointer. *}

option : OptionType; {* NetIPC Options Array *}

socket kind, {* CALL or VC socket. *}
protocol kind, {* Transport protocol. *}
call socket descriptor, {* CALL socket’s descri.*}
result, {* Result from IPC. *}
VC_socket descriptor, {* VC socket’s descript.*}
flags integer; {* NetIPC flags. *}
socket name : EnvStringType; {* Socket name. *}
socket len integer; {* Socket Length. *}
call name CallNameType; {* Used for error report*}
Y.k A L K)
{ External Declarations }

PROCEDURE InitOpt
(VAR opt

OptionType;

Network Interprocess Communication

5-123

num_args : Intleé;
VAR error : Intlé6) ; EXTERNAL;

PROCEDURE IPCCREATE

(VAR socket : integer;

VAR protocol : integer;

VAR flags : integer;

VAR opt : OptionType;

VAR csd : integer;

VAR result : integer) ; EXTERNAL;

PROCEDURE TIPCNAME
(VAR descriptor : integer;

VAR name : EnvStringType;
VAR nlen : integer;
VAR result : integer) ; EXTERNAL;

PROCEDURE IPCRECVCN

(VAR csd : integer;
VAR vcsd : integer;
VAR flags : integer;
VAR opt : OptionType;

VAR result : integer) ; EXTERNAL;

PROCEDURE IPCRECV

(VAR csd :integer;
VAR data : BufferType;
VAR dlen : integer;
VAR flags : integer;
VAR opt : OptionType;

VAR result: integer) ; EXTERNAL;

PROCEDURE IPCSEND

(VAR vcsd : integer;
VAR data : BufferType;
VAR dlen : integer;
VAR flags : integer;
VAR opt : OptionType;

VAR result : integer) ; EXTERNAL;

PROCEDURE IPCSHUTDOWN

(VAR vcsd : integer
VAR flags : integer
VAR opt : OptionType

VAR result : integer) ; EXTERNAL;

FUNCTION GetRunString $ALIAS ’'Pas.Parameters’$

(pos : Intlé;
VAR evnstr : EnvStringType;
len : Intleé

) : Intlé6; EXTERNAL;

{ InitOption

5-124 Network Interprocess Communication

Description:

——

zero entries. It is always a good idea to initialize
the option parameter before using it in any NetIPC call

{

{ }
{ }
{ This routine initializes the option parameter to contain }
{ }
{ }
{

PROCEDURE InitOption
(VAR opt parameter
VAR
result : Intle;

BEGIN {* initialize option *}

{1

OptionType) ;

{ initialize option parameter to contain zero entry.

{}

INITOPT (opt parameter, 0,result) ;

IF (result <> ZERO) THEN
BEGIN {* can’'t initialize *}

writeln(screen, 'An error occurred in your InitOpt call.’);
writeln(screen, 'The error returned was ',result:3);

GOTO 99;
END; {* can’'t initialize *}
END; {* initialize option *}

This routine lets the user know if any error occur during
It will check for a connection
aborted by peer error in which case ipcl must shut down

any of the NetIPC calls.

{
{
{
{
{ Description:
{
{
{
{ its VC connection.
{

PROCEDURE ReportError

(VAR where CallNameType;
VAR what integer;
VAR vcsd integer) ;

VAR
opt : OptionType;
call : CallNameType;

BEGIN {* report error *}

{1

e " e e e e e e e

{ If the error code received is a shutdown error, then the connection

{ has been aborted by ipc2.

{}

IF (what = SHUTDOWN) THEN

BEGIN {* peer aborted connection *}

InitOption (opt) ;

{1

{ We use IPCShutdown to shut down the VC socket.

{1

Network Interprocess Communication

5-125

flags := 0;
IPCSHUTDOWN (vcsd, flags, opt, result);
writeln (screen, PROGNAME, ' : connection aborted by peer.’);
IF (result <> ZERO) THEN
BEGIN {* can’t shut down *}

writeln(screen, PROGNAME, ' : cannot shutdown connection.’) ;
END; {* can’t shut down *}
GOTO 99;
END {* peer aborted connection *}

ELSE IF (what = TIMEOUT) THEN
BEGIN {* a timeout has occurred *}

writeln (screen, PROGNAME, ' : a timeout has occurred in ', where) ;
GOTO 99;

END {* a timeout has occurred *}

ELSE

BEGIN {* other error *}
writeln(screen, PROGNAME, ' : An error occurred in your ’,where,’ call.’);
writeln (screen, PROGNAME, ' : The error code returned was ' ,what);
GOTO 99;

END; {* other error *}
END; {* report error *}

}
}
}
}
Description: }
This routine uses IPCRecv to receive msgs from its peer }
ipc2. The message received will be displayed on the }
screen, except the shutdown message which indicates }

it is time to shut down the connection. }
}

}

}

}

}

}

}

}

When the shutdown message is received, IPCSend is used
to send a similar shutdown message back to ipc2 to
synchronize the shutdown of the connection. IPCShutdown
is then called to shut down the connection which will
in effect release all resources used for connection,
including CALL and VC socket descriptors to the system.

L R e e Ll e L R

PROCEDURE ReceiveMsg
(VAR vcsd : integer;

VAR opt : OptionType) ;
VAR
shut down message : BufferType;
receive buffer : BufferType;
receive buffer length : integer;
flags : integer;
call : CallNameType;

BEGIN {* receive message *}

{1

{ The shut down message parameter is initialized to contain a shut
{ down “message” that is identical to that sent by ipc2.

5-126 Network Interprocess Communication

{}

shut down message := 'I want to shut down.’;
receive buffer length := LENGTH OF DATA;

{1
{
{}

flags := 0;
IPCRECV (vcsd, receive buffer, receive buffer length, flags, opt, result);
IF (result <> ZERO) THEN
BEGIN {* can’'t receive *}
call := 'IPCRECV "
ReportError (call, result, wvcsd);
END; {* can’t receive *}
writeln(screen, PROGNAME, ' : waiting to receive data from peer (IPCRecv).’);

{ If the shutdown message is received, our peer want to shut down the
{ connection. In this case, we will send a shutdown message back and
I

Use IPCRecv to receive messages from peer.

shut down the connection from our side. Use IPCSend to send the msg.

F (receive buffer = shut down message) THEN
BEGIN {* time to shut down connection *}

{1

{ IPCSend will send msg. to the peer.

{1

writeln (screen, PROGNAME, ' : received shutdown msg. from peer.’);

flags := 0;
IPCSEND (vesd, shut down message, receive buffer length, flags,
opt, result) ;
IF (result <> ZERO) THEN
BEGIN {* can’t send *}
call := ’'IPCSEND "
ReportError (call, result,vcsd) ;
END; {* can’t send *}
writeln (screen, PROGNAME, ' : sending shutdown msg. to peer (IPCSend).’);

}

{
{ Now we shut down the connection. Resources will be returned
{ to the system.
{}
flags := 0;
IPCSHUTDOWN (vcsd, flags, opt, result);
IF (result <> ZERO) THEN
BEGIN {* can’t shut down! *}
call := 'IPCSHUTDOWN ' ;
ReportError (call, result, wvcsd);
END; {* can’t shut down! *}
writeln (screen, PROGNAME, ' : shutting down connection (IPCShutdown).’);
{}
END {* time to shut down connection *}
ELSE
BEGIN {* not a shutdown message *}

Network Interprocess Communication 5-127

}

Display data on screen and call receive msg again. We will
get out when we receive a shutdown message or we get an error
from IPCRecv.

e Y Ve W P

}

writeln (screen, PROGNAME, ’' :received data from peer.’);
writeln(screen,receive buffer);
ReceiveMsg(vcsd, opt) ;
END; {* not a shutdown message *}
END; {* receive message *}

BEGIN {* main program *}
{ Get the name of my socket from the runstring.
Rewrite (screen,’'1l’);
socket len := GetRunString(l,socket name,MAX SOCKET NAME) ;
IF (socket len <= 0) OR (socket len > MAX SOCKET NAME) THEN
BEGIN {* terminate with usage *}
writeln(screen, 'Usage: ’',PROGNAME,’ <my socket name>’);
GOTO 99;
END; {* terminate with usage *}

}

{ The InitOption procedure uses the NetIPC call InitOpt to initialize the }
{ option parameter used by the IPCCreate, IPCRecvcn, IPCRecv and IPCShutdown }
{ calls.

{1

InitOption (option) ;

{}

{ Set the socket kind to call socket for IPCCreate call and specify
{ TCP as the underlying transport protocol.

{}

socket kind := CALL_SOCKET;

protocol kind := TCP;

{1

{ Always initialize flag parameter before using it.

{}

flags := 0;

}

{
{ A call socket is created by calling IPCCreate. The value returned
{ in the call socket descriptor parameter will be used in the following
{ IPCName call.
{}
IPCCREATE (socket kind, protocol kind, flags, option,
call socket descriptor, result);

IF (result <> ZERO) THEN
BEGIN ({* can’t create call socket *}

call name := 'IPCCREATE ';

5-128 Network Interprocess Communication

ReportError (call name, result, call socket descriptor);
END; {* can’t create call socket *}

{1

{ Be nice to user!

{1

writeln (screen, PROGNAME, ': a CALL socket has been created (IPCCreate).’);

{}
{ IPCNAME is called to assign a name to the call socket created by
{ IPCCREATE. This name must be given to the peer program ipc2 during
{ its invocation.
{}
IPCNAME (call socket descriptor, socket name, socket len, result);
IF (result <> ZERO) THEN
BEGIN {* can’t name socket *}
call name := ’'IPCNAME "
ReportError (call name, result, call socket descriptor);
END;

{1

{ Be nice.

{1

writeln (screen, PROGNAME, ' : the CALL socket has been named (IPCName).’);

——

Since the call socket is in synchronous mode (by default), the following
IPCRecvcn call will be blocked if the peer program ipc2 is not running at
this time. ipc2 is supposed to look up the socket name of ipcl and then
issue an IPCConnect request. If that is the case then IPCRecvcn will
receive this connect request and return a VC socket descriptor which

is needed to send and receive data. At this point, you may optionally
release the CALL socket descriptor by calling the IPCShutdown if you
wish to return resources to the system. Doing so will not affect the
newly-created VC socket.

e L e e e T

{1

write (screen, PROGNAME, ' : waiting for connection request from peer’);
writeln(screen,’ (IPCRecvcn).’);
flags := 0;

IPCRECVCN (call socket descriptor, vc _socket descriptor, flags,
option, result) ;
IF (result <> ZERO) THEN
BEGIN {* can’t receive connection *}

call name := 'IPCRecvcn ';
ReportError (call name, result, call socket descriptor);
END; {* can’t receive connection *}

{1

{ Be nice

{1

writeln (screen, PROGNAME, ' : A connection has been received from peer.’);

}

{ Connection is now established between ipcl and its peer program ipc2.
{ The routine Receive Msg below will wait to receive a msg from ipc2.

Network Interprocess Communication 5-129

{ When it receives a shutdown message from ipc2, ipcl will send a
{ similar shutdown message and performs a IPCShutdown on its VC connection.

{}

ReceiveMsg (vc_socket descriptor, option);

99:
END. {* main program *}

5-130 Network Interprocess Communication

Pascal/1000 Example 2

$PASCAL ’91790-16241 REV.5240 <860303.1238>'
$CDS ON$

$CODE_CONSTANTS OFF$

$RUN STRING 80$

{}

{ NAME: IPC2

{ SOURCE: 91790-18241

{ RELOC: 91790-16241

{ PGMR: VH

{}
(-
{ Modifications:

{

{ Date Rev. Pgmr Description

[mmmmmm e e
{ 910514 5240 VH Cleaned & Modified to take inputs from runstrings.
{
(-

PROGRAM 1ipc2;
{}
{ DESCRIPTION:

This program illustrates the use of IPCCreate, IPCLookup, IPCConnect,
IPCRcv, IPCSend, and IPCShutdown. This program is a peer of ipcl.
ipc2 creates a call socket using IPCCreate then uses the name of
the node where its peer ipcl is running and ipcl’s socket name to
lookup ipcl’s call socket by calling IPCLookup. IPCConnect is then
called to make a VC connection to ipcl. IPCSend and IPCRecv are
then used to exchange data msg. between itself and ipcl. IPCShutdown
is used to shut down the connection afterward.

ipc2 <peer node name> <peer socket name>

peer node name: the name of the node where ipcl is running.

peer socket name: the name of ipcl’s call socket.

{
{
{
{
{
{
{
{
{
{ USAGE:
{
{
{
{
{
{
{
L

ABEL

99;
e)
{ Constant Definitions }
i)
CONST

PROGNAME =’1ipc2’;

ZERO = 0;

LENGTH _OF DATA = 20;
MAX RETRY = 500 { Used during lookup }
NAME NOT FOUND = 37; { Error from IPCLookup}

~.

Network Interprocess Communication 5-131

CALL_SOCKET
TCP = 4;

MAX_ SOCKET NAME
MAX_ NODE_NAME

3;

16;
50;

et e T e

IPC call socket }

TCP Protocol number }

Maximum length of socket name
Maximum length of node name
nodeName. Domain.Organization
16 chars.16 chars.16 chars

TYPE
intl6é = -32768..32767;
Byte = 0..255;
OptionType = PACKED Array [1..8] of Byte;
BufferType = PACKED Array [1..LENGTH OF DATA] of Char;
EnvStringType = PACKED Array [1..80] of Char;
name_array type = packed array [1..7] of char;
CallNameType = PACKED Array [1..15] of Char;
I ,,,——————_ .- A b)
{ Variable Declarations }
(e }
VAR
screen : Text; {* output pointer. *}
option : OptionType; {* NetIPC Options Array *}
socket kind, {* CALL or VC socket. *}
protocol kind, {* Transport protocol. *}
call socket descriptor, {* CALL socket’s descri.*}
vc_socket descriptor, {* VC socket’s descript.*}
path report descriptor, {* Path report’s descri.*}
protocol returned, {* Protocol from lookup.*}
data length, {* Length of data sent. *}
counter, {* Used for termination.*}
flags, {* NetIPC’'s flags. *}
result integer; {* Result from IPC. *}
socket name : EnvStringType; {* Peer’s socket name. *}
socket len integer; {* Peer’s socket len. *}
peer node EnvStringType; {* Peer’s node name. *}
peer node len: integer; {* Peer’s node len. *}
call name CallNameType; {* Used in reporting err*}
data buffer : BufferType; {* Data buffer. *}
bad error, lookup OK boolean;
Y.k A L K)
{ External Declarations }
NS }
PROCEDURE INITOPT
(VAR opt OptionType;
num_args intlé;

VAR error
PROCEDURE IPCCREATE

(VAR socket integer;
VAR protocol integer;

5-132

intl6) ; EXTERNAL;

Network Interprocess Communication

}
}
}
}

VAR flags : integer;

VAR opt : OptionType;
VAR csd : integer;
VAR result : integer) ; EXTERNAL;

PROCEDURE TIPCLOOKUP
(VAR name : EnvStringType;
VAR name_len : integer;
VAR location : EnvStringType;

VAR loc len : integer;
VAR flags : integer;
VAR prd : integer;
VAR protocol : integer;
VAR socket : integer;
VAR result : integer) ; EXTERNAL;

PROCEDURE IPCCONNECT

(VAR csd : integer;

VAR prd : integer;

VAR flags : integer;

VAR opt : OptionType;

VAR vcsd : integer;

VAR result : integer) ; EXTERNAL;

PROCEDURE IPCRECV

(VAR vcsd : integer;
VAR data : BufferType;
VAR dlen : integer;
VAR flags : integer;
VAR opt : OptionType;

VAR result : integer) ; EXTERNAL;

PROCEDURE IPCSEND

(VAR vcsd : integer;

VAR data : BufferType;

VAR dlen : integer;

VAR flags : integer;

VAR opt : OptionType;

VAR result : integer) ; EXTERNAL;

PROCEDURE IPCSHUTDOWN

(VAR vcsd : integer;

VAR flags : integer;

VAR opt : OptionType;

VAR result : integer) ; EXTERNAL;

FUNCTION GetRunString $ALIAS ’'Pas.Parameters’$

(pos : Intlé;
VAR evnstr : EnvStringType;
len : Intleé

) : Intlé6; EXTERNAL;

Network Interprocess Communication

5-133

Description:
This routine lets the user know if any error occurred
during any of the NetIPC calls.
PROCEDURE ReportError
(VAR where : CallNametype;
VAR what : integer) ;

BEGIN {* report error *}

{1

writeln (screen, PROGNAME, ' : an error occurred in your ’,where,’ call.’);
writeln (screen, PROGNAME, ' : the error code returned was ' ,what);
writeln (screen, PROGNAME, ' : the count was ’,counter);
GOTO 99;
END; {* report error *}
{ InitOption }
{ Description: }
{ This routine initializes the option parameter to contain }
{ zero entries. It is always a good idea to initialize }
{ the option parameter before using it in any NetIPC call}
PROCEDURE InitOption
(VAR opt parameter : OptionType) ;
VAR
result : intle;
BEGIN {* initialize option *}
{ initialize option parameter to contain zero entry.
INITOPT (opt parameter, 0,result) ;
IF (result <> ZERO) THEN
BEGIN {* can’'t initialize *}
writeln (screen, PROGNAME, ' : an error occurred in your InitOpt call.’)
writeln (screen, PROGNAME, ' : the error returned was ',result:3);

GOTO 99;
END; {* can’t initialize *}
END; {initialize option}

PROCEDURE SendMessage
(VAR vcsd @ integer;
VAR opt : OptionType) ;

5-134 Network Interprocess Communication

I

VAR

shut down message : BufferType;
send buffer : BufferType;
receive buffer : BufferType;
send buffer length : integer;
flags : integer;
error : integer;

call : CallNameType;

BEGIN {* send message *}

{1

{ Send message to our peer using IPCSend.

{1

send buffer := 'Here is the message.’;
send buffer length := length of data;
flags := 0;

IPCSEND (vecsd, send buffer,send buffer length, flags,opt,error) ;
IF (error <> ZERO) THEN
BEGIN {* can’t send *}
call := ’'IPCSEND "
ReportError (call,error) ;
END; {* can’t send *}
writeln (screen, PROGNAME, ' : sent data message to peer (IPCSend).’);

{1

{ Now we send a shutdown message to peer using IPCSend.
{}
shut down message := 'I want to shut down.’;
IPCSEND (vesd, shut _down message,send buffer length, flags,opt,error) ;
IF (error <> ZERO) THEN
BEGIN {* can’t send *}
call := ’'SHUTDOWN ' ;
ReportError (call, error) ;
END; {* can’t send *}
writeln (screen, PROGNAME, ' : sent shutdown message to peer (IPCSend).’);

}

{
{ Wait for our peer to send back a shutdown message.
{ Use IPCRecv to receive this message.
{}
flags := 0;
IPCRECV (vecsd, receive buffer,send buffer length, flags,opt,error) ;
IF (error <> ZERO) THEN
BEGIN {* can’'t receive *}
call := 'IPCRECV "
ReportError (call,error) ;
END; {* can’t receive *}

{)

{If the receive buffer contains the shutdown “message,” we will
{ call IPCShutdown to shut down the connection.

{}

IF (receive buffer = shut down message) THEN
BEGIN {* shut down connection *}

Network Interprocess Communication 5-135

write (screen, PROGNAME, ' : receiving shutdown message from peer’);
writeln(screen,’ (IPCRecv).’);
flags := 0;
IPCSHUTDOWN (vcsd, flags, opt, error) ;
IF (error <> ZERO) THEN
BEGIN {* can’t shut down *}
call := 'SHUTDOWN ’;
ReportError (call,error) ;
END; {* can’t shut down *}
writeln (screen, PROGNAME, ' : shutting down connection (IPCShutdown).’);
END {* shut down connection *}
ELSE
{}
{ we should not get here because our peer will only send
{ us the shutdown message. If we get here, then the receive
{ buffer is corrupted.

{}

BEGIN {* shouldn’t be here *}

write (screen, PROGNAME, ' : expecting shutdown message from peer.’);
writeln (screen, PROGNAME, ' : but received something else.’);
writeln (screen, PROGNAME, ': will shut down connection.’);

flags := 0;

IPCSHUTDOWN (vcsd, flags, opt, error) ;
IF (error <> ZERO) THEN
BEGIN {* can’t shut down *}
call := 'SHUTDOWN ’;
ReportError (call,error) ;
END; {* can’t shut down *}
writeln (screen, PROGNAME, ' : shutting down connection.’);
END; {* shouldn’t be here *}

END; {send routine}

BEGIN {main program}

{}

Rewrite (screen,’'1l’) ;

{1

{ Get the names of my peer’s socket and node from the runstring.
{}
socket len := GetRunString(l,socket name,MAX SOCKET NAME) ;
IF (socket len <= 0) OR (socket len > MAX SOCKET NAME) THEN
BEGIN {* terminate with usage *}
writeln(screen, 'Usage: ’',PROGNAME,’ <peer socket name> <peer node name>');
GOTO 99;
END; {* terminate with usage *}

peer node len := GetRunString(2,peer node,MAX NODE NAME) ;
IF (peer node len <= 0) OR (peer node len > MAX SOCKET NAME) THEN
BEGIN {* terminate with usage *}
writeln(screen, 'Usage: ’',PROGNAME,’ <peer socket name> <peer node name>') ;

5-136 Network Interprocess Communication

GOTO 99;
END; {* terminate with usage *}

}

{ The InitOption procedure uses the NetIPC call InitOpt to initialize the }
{ option parameter used by the IPCCreate, IPCRecvcn, IPCRecv and IPCShutdown }
{ calls.

{1

InitOption (option) ;

{}

{ set the socket kind to call socket for IPCCreate call and specify
{ TCP as the underlying transport protocol.

{}

socket kind := CALL SOCKET;

protocol kind := TCP;

{1

{ The flags parameter is not used in this program so flags is
{ made type integer and assigned the value zero to ensure that all
{ the bits are clear.

{}

flags := ZERO;

{}
{ A CALL socket is created by calling IPCCreate. The value returned in
{ the call socket descriptor parameter will be used in the following
{ IPCConnect call to ipcl.
{}
IPCCREATE (socket kind,protocol kind, flags,option,call socket descriptor,result) ;
IF (result <> ZERO) THEN
BEGIN {* can’'t create *}
call name := 'IPCCREATE ';
ReportError (call name, result) ;
END; {* can’t create *}
writeln (screen, PROGNAME, ' : a CALL socket has been created (IPCCreate).’);

——

With the peer’s node name and socket name, we call IPCLookup to

to gain access to the peer’s call socket. If successful, a path
descriptor will be returned which we need for IPCConnect.

IPCLOOKUP searches the socket registry at the given node for our

peer’s name. This call returns a path report descriptor that is used in
the following IPCCONNECT call to request a connection with the peer.

Because it is possible for IPCLookupP to search for the socket name before
our peer places it in its node’s socket registry, we will try to look up the
name several times before aborting.}

e L e L T PP

{1

lookup OK := FALSE;
bad error := FALSE;
counter = ZERO;

Network Interprocess Communication 5-137

writeln (screen, PROGNAME, ' : looking up peer socket...(IPCLookup).’);
REPEAT {* we give up if we cannot find our peer’s socket after MAX RETRY *}
IPCLOOKUP (socket name, socket len,peer node,peer node len, flags,
path report descriptor,protocol returned, socket kind, result) ;

IF (result = ZERO) THEN
BEGIN {* found it. *}
lookup OK := TRUE;
END {* found it. *}
ELSE
BEGIN {* can’'t find it yet *}
IF (result = NAME NOT FOUND) THEN
BEGIN {* retry if possible *}

counter := counter + 1;
END {* retry if possible *}
ELSE
BEGIN {* other error - need to abort *}
bad error := TRUE;
END; {* other error - need to abort *}

END; {* can’'t find it yet *}
UNTIL (lookup OK) OR (counter = MAX RETRY) OR (bad error);

{1

{ At this point, we either lookup successfully or else we abort.
{}
IF (bad error) OR (counter = MAX RETRY) THEN
BEGIN {* abort *}
call name := 'IPCLOOKUP ' ;
ReportError (call name, result) ;
END; {* abort =}

——

The call socket descriptor returned by IPCCREATE and the

path report descriptor returned by IPCLOOKUP are used in

IPCCONNECT to request a connection with ipcl. The VC_socket descriptor
returned by IPCCONNECT is used in subsequent calls to reference the
connection. Once this call completes successfully, you may optionally
release the call socket descriptor by calling IPCSHUTDOWN in order to return
resources to the system. Doing so will not affect the newly-created

VC socket descriptor.

e L e L

—_
——

flags := 0;
IPCCONNECT (call socket descriptor,path report descriptor, flags,option,
vc_socket descriptor,result) ;
IF (result <> ZERO) THEN
BEGIN {* can’'t connect *}
call name := 'IPCCONNECT’;
ReportError (call name, result) ;
END; {* can’t connect *}
writeln (screen, PROGNAME, ' : trying to connect to peer VC socket (IPCConnect).’);

5-138 Network Interprocess Communication

{1
{
{}

flags := 0;
data_length := LENGTH OF DATA
IPCRECV (vc_socket descriptor,data buffer,data length, flags,option,result) ;
IF (result <> ZERO) THEN
BEGIN {* something’s wrong. *}
call name := 'IPCRECV ';
ReportError (call name, result) ;
END; {* something’s wrong. *}

IPCRECV is called here to determine if the connection has been established.

writeln (screen, PROGNAME, ' : connection to peer is established (IPCRecv).’);

{1

{ The send routine below will send a message to the peer and then a shutdown
{ message using IPCSend. IPCRecv is then called to receive the shutdown msg.
{ back from the peer. Once the shutdown message is received, IPCShutdown is
{ called to close the connection.

{}
SendMessage (vc_socket descriptor,option) ;

99:

END. {* main program *}

Network Interprocess Communication 5-139

FORTRAN 77 Example 1

FTN77,L
$CDS ON

PROGRAM IPC3(4,99),91790-16237 REV.5240 <900208.1422>

c

c NAME: IPC3

c SOURCE: 91790-18237

c RELOC: 91790-16237

c PGMR: VH

c

C————— -
C Modifications:

c

c Date Rev. Pgmr Description

C e e e
C 900208 5020 BEB Changed the error code for shutdown from 65 to 64.
c

c 910521 5240 VH Modified to take inputs from runstring.

C————— -

This program illustrates the use of IPCCreate, IPCName, IPCControl,
IPCRcvcn, IPCRecv, IPCSend, and IPCShutdown. Using IPCCreate, the
program creates a socket and names it <my socket name> as retrieved
from the runstring using IPCName. IPCCreate automatically creates
a socket in synchronous mode with a default timeout of 60 seconds.
The program then calls IPCRecvcn to wait to receive a connection
request from a peer program.

The peer program will be invoked with the name of the node where this
program is running and its socket’s name. Once the connection is
established, the peer program sends a data message and a shutdown
message. This program uses IPCRecv to receive the messages and upon
receiving the shutdown message it calls IPCSend to send the shutdown
message back to its peer. IPCShutdown is then called to shut down the
connection.

USAGE:
ipc3 <my socket namex>

my socket name: the name of the socket created by ipcl.

o e OO NN NN NI NN NN NI NN NI NONONONQ!

IMPLICIT NONE

(@!

INTEGER*2 RHPAR ! function to get runstring
INTEGER*2 socket name (8) ! my socket name (max is 16).
INTEGER*2 1index

INTEGER*2 opt num arguments

INTEGER*2 receive buffer(10) ! data buffer.
INTEGER*2 option(2) ! NetIPC option array.
INTEGER*2 shut down message(10) ! shutdown connection msg.

5-140 Network Interprocess Communication

NN NA (@] [oHOHNONONONONONS! (@]

NN NOAN

INTEGER*2 length ! len of socket name
INTEGER*2 here ! where the error occurs.
INTEGER*2 init_result

INTEGER*4 socket kind ! kind of socket (CALL or VC)
INTEGER*4 protocol kind ! always TCP.

INTEGER*4 call socket descriptor ! CALL socket descriptor
INTEGER*4 vc_socket descriptor ! VC socket descriptor
INTEGER*4 result ! result from NetIPC calls.
INTEGER*4 socket length ! len of socket name
INTEGER*4 msg buffer length ! len of msg. buffer
INTEGER*4 flags ! NetIPC flags

DATA shut down message/20HI want to shut down./

socket length = RHPAR(1,socket name, 16)
IF (socket length .EQ. 0) THEN

write(1l,’ (“Usage: ipc3 <my socket name>") ')
goto 99
ENDIF

The INITOPT call initializes the option parameter used by the
IPCCREATE, IPCRECVCN, IPCRECV and IPCSHUTDOWN calls. By setting
the opt num arguments parameter to zero, the option parameter is
initialized to contain zero entries. (An example of adding entries
to an option parameter is included in the discussion of ADDOPT in
this section.

opt _num arguments = 0
CALL INITOPT (option,opt num arguments,init result)
here =1

IF (init result .NE. 0) GO TO 99

socket kind is set to 3 and protocol kind is set to 4 to
specify a call socket and the TCP protocol for the following
IPCCREATE call.

socket kind = 3

protocol kind = 4

The flags parameter is not used in this program, so flags
is made a double integer and assigned the value zero to ensure
that all the bits are clear.

Network Interprocess Communication

5-141

N NONOAN

NN NA

[oNONONONOINONINONOINONONS!

(@}

P 0QONOnNA

5-142

A call socket is created by calling IPCCREATE. The value returned
in the call socket descriptor parameter will be used in the follow
IPCNAME call.

write(l,’ (“ipc3: creating CALL socket (IPCCreate).”)’)
CALL IPCCREATE (socket kind,protocol kind, flags,option,
+ call socket descriptor,result)

here = 2 IF (result .NE. 0) GO TO 99

IPCNAME is called to assign a name to the newly-created call
socket. This name should be known to the peer ipc4.

write(1l,’ (“ipc3: naming CALL socket (IPCName).”)’)

CALL IPCNAME (call socket descriptor, socket name, socket length,
+ result)
here = 3

IF (result .NE. 0) GO TO 99

Since the call socket is in synchronous mode (by default), the
following IPCRecvcn call will be blocked if the peer program ipc4
is not running at this time. ipc4 is supposed to look up the

socket name of ipc3 and then issue an IPCConnect request. If

that is the case then IPCRecvcn will receive this connect request
and return a VC socket descriptor which is needed to send and
receive data. At this point, you may optionally release the CALL
socket descriptor by calling the IPCShutdown if you wish to return
resources to the system. Doing so will not affect the newly-created
VC socket.

write(l,’ (“ipc3: waiting connection from peer (IPCRecvcn).”)’)
flags = 0

CALL IPCRECVCN (call socket descriptor,vc socket descriptor,
+ flags,option, result)

here = 5 IF (result .NE. 0) GO TO 99

Connection is now established between ipc3 and its peer program
ipc4. Now we wait to receive a msg from ipc4. When a shutdown
message is received, ipc3 will send a similar shutdown message
and performs a IPCShutdown on its VC connection.
flags = 0
msg_buffer length = 20
CALL IPCRECV(vc_socket descriptor,receive buffer,
+ msg_buffer length, flags,option, result)
here = 6
IF (result .NE. 0) GO TO 99

Network Interprocess Communication

The receive buffer is compared to the shutdown “message.”
If the shutdown “message” is received, ipcl sends a shut
down “message” back to ipc4 so that ipc4 will know that its
data has been received. We then do the IPCShutdown.

NN NONA

IF (receive buffer .EQ. shut down message) THEN

flags = 0
write(l,’ (“ipc3: received shutdown message (IPCRecv).”)’)
write(l,’ (“ipc3: sending shutdown message (IPCSend).”)’)
CALL IPCSEND (vc_socket descriptor, shut down message,

+ msg_buffer length, flags,option, result)
here = 7

IF (result .NE. 0) GO TO 99

write(1l,’ (“ipc3: shutting down connection (IPCShutdown).”)’)
CALL IPCSHUTDOWN (vc_socket descriptor, flags,option, result)
IF (result .NE. 0) THEN

write(1l,’ (“ipc3: cannot shutdown connection.”)’)
write(l,’ (“ipc3: error code returned: ”,14)’) result
ENDIF
GO TO 99
ELSE
C ___
c If the shutdown “message” was not received, ipc3 will
c simply receive the data and print it. It then returns to
C the previous IPCRECV call receive subsequent data until
C the shutdown “message” is received.
C ___
write(l,’ (“ipc3: received data message (IPCRecv)."”)’)
WRITE (1, (10A2) ") (receive buffer (index),index = 1,10)
GO TO 10
ENDIF
99 IF (result .NE. 0) THEN
WRITE (1,’ (“ipc3: result error code: ”,I4)’) result
WRITE (1, (“ipc3: at location: ”,I4)’) here
ENDIF
100 STOP

END

Network Interprocess Communication 5-143

FORTRAN 77 Example 2

FTN77,L
$CDS ON

PROGRAM IPC4(4,99),91790-16238 REV.5240 <860303.1239>

c

c NAME: IPC4

c SOURCE: 91790-18238

c RELOC: 91790-16238

c PGMR: VH

c

C ___
C Modifications:

c

c Date Rev. Pgmr Description

C ___
c 910521 5240 VH Modified to take inputs from runstring.

C ___
c

c This program illustrates the use of IPCCreate, IPCLookup, IPCConnect,
C IPCRcv, IPCSend, and IPCShutdown. This program is a peer of ipc3.
C ipc4 creates a call socket using IPCCreate then uses the name of
C the node where its peer ipc3 is running and ipc3’s socket name to
C lookup ipc3’s call socket by calling IPCLookup. IPCConnect is then
C called to make a VC connection to ipc3. IPCSend and IPCRecv are

C then used to exchange data msg. between itself and ipc3.

c IPCShutdown is used to shut down the connection afterward.

c

C USAGE:

c ipc4 <peer node name> <peer socket name>

c

c peer node name: the name of the node where ipc3 is running.

c

c peer socket name: the name of ipc3’s call socket.

c

C __

IMPLICIT NONE

INTEGER*2 socket name (8) ! peer socket name (max is 16).
INTEGER*2 node_ name (25) ! peer node name (max is 50).
INTEGER*2 RHPAR ! function to get runstring

INTEGER*2 send buffer(10) ! netipc send buffer.
INTEGER*2 option(2) ! netipc option
INTEGER*2 receive buffer(10) ! netipc receive buffer.
INTEGER*2 data_ buffer(25) ! data buffer

INTEGER*2 shut down message (10) ! shutdown message.
INTEGER*2 opt num arguments, counter

INTEGER*2 init result, here, index

5-144 Network Interprocess Communication

(@!

[oNOHONONONONONS! (@]

NN NOAN

INTEGER*4 socket kind

INTEGER*4 protocol kind
INTEGER*4 call socket descriptor
INTEGER*4 vc_socket descriptor
INTEGER*4 result

INTEGER*4 socket length

CALL or VC socket type
TCP protocol

CALL socket descriptor
VC socket descriptor
netipc result

socket name’s length

INTEGER*4 node_ length ! node name’s length
INTEGER*4 msg buffer length ! msg buffer’s length
INTEGER*4 data length ! data length

INTEGER*4 path report descriptor, protocol returned, flags

DATA send buffer/20HHere is the message./
DATA shut down message/20HI want to shut down./

socket length = RHPAR (1, socket name, 16)
IF (socket length .EQ. 0) THEN

write(1l,’ (“Usage: ipc4 <peer socket name> <peer node name>") ')
goto 100
ENDIF

node length = RHPAR(2,node name, 50)
IF (node length .EQ. 0) THEN

write(1l,’ (“Usage: ipc4 <peer socket name> <peer node name>") ')
goto 100
ENDIF

INITOPT is called to initialize the option parameter used in the
IPCCREATE, IPCLOOKUP, IPCCONNECT, IPCRECV, IPCSEND and
IPCSHUTDOWN calls. By setting opt num arguments to zero, the
option parameter is initialized to contain zero entries.

(An example of adding options to an option parameter is included
in the discussion of ADDOPT in this section.

opt num arguments = 0

CALL INITOPT (option,opt num arguments,init result)

here = 1
IF (init result .NE. 0) GO TO 99

socket kind is set to 3 and protocol kind is set to 4 to specify
a call socket and the TCP protocol for the following IPCCREATE
call.

socket kind = 3

protocol kind = 4

Network Interprocess Communication

5-145

N NONOAN

NN NOAN

[N NI NINONOINONONONS!

21

(@}

5-146

The flags parameter is not used in this program so flags is made
a double integer and assigned the value zero to ensure that all
the bits are clear.

A call socket is created by calling IPCCREATE. The value returned
in the call socket descriptor parameter will be used in the following
IPCCONNECT call.

write(l,’ (“ipc4: creating CALL socket (IPCCreate).”)’)
CALL IPCCREATE (socket kind,protocol kind, flags,option,
+ call socket descriptor,result)
here = 2

IF (result .NE. 0) GO TO 99

With the peer’s node name and socket name, we call IPCLookup to

to gain access to the peer’s call socket. If successful, a path
descriptor will be returned which we need for IPCConnect.
IPCLOOKUP searches the socket registry at the given node for our
peer’s name. This call returns a path report descriptor that is
used in the following IPCCONNECT call to request a connection with
the peer.

Because it is possible for IPCLookup to search for the socket

name before our peer places it in its node’s socket registry, we
will try to look up the name several times before aborting.
counter
flags

=0
write(1,’

(“ipc4: looking up peer CALL socket (IPCLookup).”)"’)
CALL IPCLOOKUP (socket name, socket length,node name,node length,

+ flags,path report descriptor,protocol returned, socket kind,
+ result)

counter = counter + 1
here = 4

IF (result .EQ. 0) GO TO 28
IF (result .NE. 37) GO TO 99

IF (counter .LE. 500) THEN
GO TO 21

ELSE
GO TO 99

ENDIF

The call socket descriptor returned by IPCCREATE and the
path report descriptor returned by IPCLOOKUP are used in

Network Interprocess Communication

N NN NAN

28

NN NA

(@}

(@}

IPCCONNECT to request a connection with ipc3. The
VC_socket descriptor returned by IPCCONNECT is used in subsequent
calls to reference the connection. Once this call has completed

successfully, you may optionally release the call socket descriptor
by calling IPCSHUTDOWN in order to return resources to the system.

Doing so will not affect the newly-created VC socket descriptor.

flags = 0
CALL IPCCONNECT (call socket descriptor,path report descriptor,
+ flags,option,vc _socket descriptor,result)
here = 5

IF (result .NE. 0) GO TO 99

flags = 0
data_length = 20

IPCRECV is called to determine if the connection has been
established.

CALL IPCRECV (vc_socket descriptor,data buffer,data length,
+ flags,option, result)

here = 6
IF (result .NE. 0) GO TO 99

write(l,’ (“ipc4: sending data message (IPCSend).”)’)
flags = 0

msg_buffer length = 20

CALL IPCSEND (VC_socket descriptor, send buffer,

+ msg _buffer length, flags,option, result)

here = 7
IF (result .NE. 0) GO TO 99

After the data is sent, ipc4 initiates the shutdown dialogue
by sending a shutdown “message” to ipc3.

write(l,’ (“ipc4: sending shutdown message (IPCSend).”)’')
flags = 0

CALL IPCSEND (vc_socket descriptor, shut down message,

+ msg_buffer length, flags,option, result)
here = 8

IF (result .NE. 0) GO TO 99

Network Interprocess Communication

5-147

NN NNQAN N NONOAN

NNONNOOAN

99

100

5-148

After it receives the shutdown “message,” ipc3 will send its

own shutdown “message” to ipc4. IPCRECV is called to receive

this data.

write(l,’ (“ipc4: waiting to receive shutdown msg (IPCRecv).”)’)

flags = 0

CALL IPCRECV(vc_socket descriptor,receive buffer,
msg_buffer length, flags,option, result)

here = 9
IF (result .NE. 0) GO TO 99

If the receive buffer contains the shutdown “message,” ipc4 will
call IPCSHUTDOWN to shut down its VC socket descriptor and
terminate the connection.

IF (receive buffer .EQ. shut down message) THEN

flags = 0

write(1l,’ (*ipc4: shutting down connection (IPCShutdown).”)’)
CALL IPCSHUTDOWN (vc_ socket descriptor, flags,option, result)
here = 10

IF (result .NE. 0) GO TO 99

GO TO 100 ! we’re done.

Since the only data ipc4 receives from ipc3 is a shutdown message
it should never branch to the following ELSE statement. If this
process were the recipient of several IPCSEND calls, it should
call IPCRECV again.

ELSE
WRITE (1, (10A2) ") (receive buffer (index),index=1,10)
GO TO 30

ENDIF

WRITE (1, ' (“ipc4: result error code: ”,I4)’) result

WRITE (1, ' (“ipc4: at location: ”,I4)’) here

STOP

END

Network Interprocess Communication

Remote Process Management

Overview

Remote Process Management (RPM) is an NS Common Service that enables a process on one
NS-ARPA/1000 node to schedule, control, and terminate a program on the local node or at a
remote node. RPM calls are made programmatically. Because RPM includes many
RTE-equivalent features that are documented using the term, program, it is used instead of process
throughout this section.

Programs that use RPM calls can be categorized as either parent or child programs. The
scheduling program is called the parent program. The scheduled program is called the child
program. The child program must be an executable file on the node on which it is to be scheduled.
Figure 6-1 shows a simple parent-child relationship. Different types of parent-child relationships
are explained in “RPMCREATE” later in this section.

PARENT NODE CHILD NODE

parent program
schedules a child

logon to node
schedule child program,
child executes

v

v
parent continues
to execute

v
parent terminates v

child program either
terminates or continues
to execute depending
upon the parent-child
relationship

v

Figure 6-1. Parent-Child Relationship

Remote Process Management 6-1

Although the child program can exist on the local node, an advantage of RPM is the ability to
schedule programs on a remote node. In this section, a node can be a local or a remote node,
unless specifically stated otherwise.

Features of RPM

RPM facilitates scheduling remote NetIPC programs, and thus enhances the use of distributed
Network Interprocess Communication. However, RPM is not limited to monitoring only NetIPC
programs. You can use RPM to schedule any specified program having an executable file. Other
features of RPM include the following:

e Scheduling a program in any session with a specified logon name.

e Scheduling several programs at the same node including scheduling several programs with
wait (wait for child program to complete execution).

e Scheduling several programs to be within the same specified session.

e Scheduling a child program to be dependent upon the parent. If the parent program
terminates, the child also terminates.

The form of remote processing offered by RPM is different than that provided by DEXEC.
Because DEXEC is a DS/1000-IV Compatible Service, it can access NS-ARPA/1000 and
DS/1000-1V nodes. RPM accesses only NS-ARPA/1000 nodes. RPM is intended to complement
DEXEC. DEXEC is a distributed version of RTE EXEC calls, which contain functions not
directly related to program scheduling and control, such as read/write and other I/O calls. In
contrast, RPM provides functions for managing programs (some of which cannot be performed by
EXEC calls alone) and does not have programmatic I/O requests.

6-2 Remote Process Management

Summary of RPM Calls

Application programs access RPM via four calls listed alphabetically in Table 6-1. A brief
explanation of the RPM calls is presented here. More details are given in the descriptions of each
RPM call later in this section.

Table 6-1. RPM Calls
Call Description
RPMCONTROL Controls the execution of a child program at the remote or local node. The parent
(from a parent program can do one of the following operations:
program) e Suspend a child program.
® Resume a child program.
e Set the break flag for a child program.
® Change the program priority for a child program.
® Get the program status of a child program.
RPMCREATE Schedules a child program and, if necessary, creates a session in which the
(from a parent program will run. The parent program can also do one or more of the following
program) operations:
e Wait for a child program to complete execution.
e Have child programs share the same session.
e Cause automatic termination of a child program when the parent program
terminates.
e Set the working directory for a child program.
® Restore the child program from an executable file.
® Pass a string to a child program.
® Assign a memory partition for a child program.
e Set the child program’s scheduling priority.
e Change the working set size for a child program.
® Change the VMA space size for a child program.
® Change the CDS code size for a child program.
® Change the CDS data size for a child program.
® Time schedule a child program.
® Schedule a child program immediately.
® Queue schedule a child program immediately.
RPMGETSTRING Retrieves strings from the parent program.
(from a child
program)
RPMKILL Terminates a specified child program scheduled by an RPMCreate call.
(from a parent
program)

Remote Process Management

6-3

RPM Programming Considerations

The following subsection explains the RPM program scheduling and program terminating
considerations.

RPM parent programs must be compiled and linked as CDS programs. RPM child programs can
be either CDS or non-CDS programs. If an RPM child program makes an RPM call, then it must
be a CDS program. Refer to the RTE-A Programmer’s Reference Manual and RTE-A Link Manual
for more information on CDS programs.

A stack size of 5000 words is a recommended stack size for RPM programs. If a stack size error
occurs when loading an RPM program, relink the program with a larger stack size. For example

CI> link parent.run

LINK> LK prepare program for changing
LINK> ST, 6000 change stack size to 6000 words
LINK> EN

CI>

Alternately, the stack size can be specified in a .LOD file. Refer to the RTE-A LINK User’s
Reference Manual for more information.

Any program making an RPMCreate call becomes a parent program. The child program must be
an executable file. RPMCreate must be issued before any other RPM calls can be made on or by
that child program. RPMCreate returns a unique program descriptor to the parent program
identifying the child program. This program descriptor is used in subsequent RPMControl and
RPMKill calls from the parent program.

The parent program may also send a string to the child in the RPMCreate call. The child
program uses the RPMGetString call to retrieve information from the parent program. The
child program must be a CDS program if it makes the RPMGetString call or any RPM other
call. Otherwise, the child may be either a CDS or a non-CDS program.

Once the child program has been scheduled, the parent can use an RPMControl call to send
control requests to the child program. The RPMControl call can also be used to receive status
information regarding the child program.

To terminate the child program, the parent should use the RPMKi11 call. A program may issue up
to 31 RPMCreate calls. If more calls are needed, the parent must issue RPMKi11 calls for the
already scheduled child programs. This is necessary even if they have already been terminated by
another means to help RPM clean up and re-use memory. If there is not enough memory to
create a child program, RPM generates an “Insufficient memory to create a child program” error
(error code 10).

The child program can itself become a parent program by issuing an RPMCreate call. There is no
upper limit to this hierarchy. As long as there are enough RTE resources available for scheduling
programs (such as ID segments, sessions, memory partitions), a child can become a parent and
schedule another child which then becomes a parent, and so on.

If a program (either a child or a parent) schedules another program using RTE EXEC calls, then
that scheduled program is not considered to be an RPM child program. RPM does not monitor
EXEC scheduled programs.

6-4 Remote Process Management

Here are a few considerations when creating and removing RPM programs:

e RPM programs that use the RTE DTACH and ATACH programming calls are not supported.
Such programs separate themselves from RPM’s control. RPM cannot monitor these
programs.

e o ensure successful cleanup of NS-ARPA resources, do not remove the ID segment of the
child program (such as using the RTE OF,program,ID command).

e [t takes up to five seconds for RPM to cleanup after a child program terminates. Do not try
to create the same child within that time.

RPM Syntax Conventions

The syntax provided in the following pages for each RPM call is meant to illustrate a Pascal
procedure call statement. Parameters that are either output, or both input and output, are
underlined in the syntax diagram. All other parameters are input parameters. Please refer to the
sample programs for examples of Pascal and FORTRAN variable declarations.

All RPM call parameters are required. You may pass a zero in some parameters in order to
obtain a default value.

The flags, opt, result, and nodename parameters are common parameters used in the RPM
calls. They follow the same conventions as the NetIPC parameters. For quick reference, these
parameters are briefly explained in the following paragraphs. For further information on these
parameters, refer to “NetIPC Common Parameters” in the preceding section, “Network
Interprocess Communication.”

Use the InitOpt, AddOpt, and ReadOpt NetIPC calls to facilitate your use of the opt
parameter. These NetIPC calls are explained in “Special NetIPC Calls” also in the section,
“Network Interprocess Communication.”

Flags Parameter

The flags parameter is a bit map of 32 special request bits. By setting bits in the f1ags
parameter, you can invoke various services in the RPMCreate call. The RPMControl call also
includes a f1ags parameter, but it is reserved for future use. However in this call, the f1ags
parameter must be initialized to zero before the call can be used. The fl1ags parameter must
also be cleared after it is used, because a non-zero value may be returned in f1ags. This
precaution should also be taken when programming with NetIPC calls.

Remote Process Management 6-5

Note NetIPC and RPM calls assume that the bits in the fI1ags parameter are
numbered from left to right with the most significant bit being bit one and the
least significant bit being bit 32.

MSB

123456 ... 32 Pascal, NetIPC, and RPM
MSB

31 30 29 28 ... 0 FORTRAN

The “Flags Parameter” subsection of the “Network Interprocess Communications” section
explains how the flags parameter is declared and manipulated in Pascal and FORTRAN.

Opt Parameter
The opt parameter allows you to request optional services when invoking the RPMCreate call.
The opt parameter is an array which enables a varying number of arguments to be specified.

Use the InitOpt, AddOpt, and ReadOpt NetIPC calls to facilitate your use of the opt
parameter. These NetIPC calls are explained in “Special NetIPC Calls” in the section, “Network
Interprocess Communication.”

Result Parameter

Every RPM call has a result parameter. If an error occurs when a program makes an RPM call,
an error code is returned in this parameter. The NS-ARPA/1000 Error Message and Recover
Manual lists and explains the RPM error codes.

Nodename Parameter
A node name (the nodename parameter) refers to a node and has a hierarchical structure as
follows:

node[.domain[.organization]]

The NS-ARPA node name syntax is described previously in “Node Names” in the “Introduction”
section of this manual.

6-6 Remote Process Management

RPMCONTROL

Controls the execution of a child program.

Syntax

RPMCONTROL

Parameters

pd

nodename

nodelen

regcode

(pd, nodename , nodelen, reqcode, wrtdata, wrtlen,
readdata, readlen, flags, result)

Byte array (Pascal); Word array (FORTRAN), by
reference. An array of 16 bytes containing the program descriptor of the
child program to which control requests are sent. The program descriptor
is a unique value returned from the RPMCreate call. Refer to the
RPMCreate description in this section for more information about pd.

Packed array of characters (Pascal); word array
(FORTRAN), by reference. A variable length array identifying the
node on which the child program resides. The syntax of the node name is

node [.domain|[.organization]], which is further described in
“Node Names” of the “Introduction” section and in “Nodename
Parameter” of the “Network Interprocess Communication” section of this
manual.

Default: You may omit the organization, organization and domain, or all
parts of the node name. When organization or organization and domain
are omitted, they will default to the local organization and/or domain. If
the nodelen parameter is set to zero, nodename is ignored and the node
name defaults to the local node.

32-bit non-negative integer, by value in Pascal, by
reference in FORTRAN. The length in bytes of the nodename
parameter. If nodelen is zero (0), the nodename parameter is ignored
and the node name defaults to the local node. The maximum length of a
fully-qualified node name length is 50 bytes.

If nodelen is zero, it is assumed that the parent is either sending the
RPMControl request to a dependent child program that it previously
scheduled or to a child program on the parent’s node (which is the local
node). Refer to “Dependent and Independent Child Programs™ in the
RPMCreate section for an explanation of dependent child programs.

32-bit non-negative integer, by value in Pascal, by
reference in FORTRAN. The request code for the control operation to
be performed on the child program. The request codes are RTE-A specific,
and you should refer to the RTE-A User’s Manual and RTE-A Programmer’s
Reference Manual for detailed explanations of these RTE-A commands and
calls. The request codes for RPMControl are as follows:

Remote Process Management 6-7

RPMCONTROL

wrtdata

wrtlen

e 20001—Suspend execution of the child program. No data is
required and none is returned. Therefore, wrtlen and readlen
must be zero.

This request is equivalent to the RTE-A SS (suspend program)
command. Asin RTE-A, if a child program is in a state that
prevents it from being suspended, the program is not suspended
until it is in the right state. No error is returned in result in this
case (similarly as in RTE-A).

e 20002—Resume execution of the child program at the point it was
suspended. No data is required and none is returned. Therefore,
wrtlen and readlen must be zero.

This request is equivalent to the RTE-A GO (resume program)
command.

e 23120—Set the IFBRK break flag in the child program’s ID
segment. The child program must check this flag with the RTE-A
IFBRK system call to respond to it. No data is required and none is
returned. Therefore, wrtlen and readlen must be zero.

e 23030—Change the child program’s priority. The priority number is
a 16-bit integer from 1 to 32767 with the smaller number
representing the higher priority. The priority number is placed in
the wrtdata parameter. This request is equivalent to the RTE-A
PR (change program priority) command, except that you cannot
request the program priority.

e 23130—Get the child program’s status. RPM invokes the RTE-A
IDINFO call to obtain the status. Refer to the RTE-A Programmer’s
Reference Manual for more information and for a list of possible
status values. The status is a 16-bit integer returned in the
readdata parameter. The readlen parameter must be set to at
least two bytes.

Due to a network time delay, the actual execution of any of the above
requests may be delayed.

Byte array (Pascal); Word array (FORTRAN), by
reference. A variable length array with data to be sent to the child
program for the request. When a regcode of 23030 is specified, the
program priority is placed in wrtdata. The program priority is declared
as a 16-bit integer, and the wrtlen parameter is two bytes.

32-bit non-negative integer, by value in Pascal, by
reference in FORTRAN. Length in bytes of wrtdata.

Only regcode 23030 (PR command) sends information from the calling
parent program in wrtdata. The parameter wrtlen must be two. All
other request codes must specify a zero for wrtlen.

6-8 Remote Process Management

readdata

readlen

(input/output)

flags

result

Discussion

RPMCONTROL

Byte array (Pascal); Word array (FORTRAN), by
reference. A variable length array with the data returned to the calling
parent program. If regcode of 23130 is used, then the program status is
returned in readdata.

32-bit non-negative integer, by reference. On input,
readlen is the maximum number of bytes expected in the readdata
parameter. On output, readlen is the actual number of bytes received in
the readdata parameter. If result is non-zero (an error has occurred),
readlen is set to zero, and no data is in readdata.

Only regcode 23130 (IDINFO call) receives information from a child
program (program status) in readdata. The parameter readlen must
be two. All other request codes must specify a zero in readlen.

32 bits, by reference. A 32-bit map of special request bits. This
parameter is reserved for future use. This parameter must contain all
zeroes (cleared).

32-bit non-negative integer, by reference. The result of
the RPMControl request; zero if no error. If result is not zero, an error
has occurred. Errors are defined in the NS-ARPA/1000 Error Message and

Recover Manual.

RPMControl is used for controlling execution of a child program that was previously scheduled
by an RPMCreate call.

The parent program need not be the original parent to call RPMControl to a specific child
program. As long as the correct program descriptor is supplied in RPMControl, you can send
control requests to any child program in any session on any specified node (nodename

parameter).

Remote Process Management 6-9

RPMCREATE

Schedules a program and, if necessary, creates a session for that program to run in.

Syntax

RPMCREATE (progname,namelen, nodename,nodelen, login,loginlen,
password, passwdlen, flags, opt, pd, result)

Parameters

progname Packed array of characters (Pascal); word array
(FORTRAN), by reference. A variable length array of ASCII
characters containing the name of the child program to be scheduled. If the
child program does not reside in the working directory, the full path name
of the child program must be specified. The child program must be an
executable file. Although RPMCreate may accept program names up to
256 characters, the child program name on an HP 1000 RTE-A system may
not exceed 64 characters. The progname parameter is not case sensitive.

namelen 32-bit positive integer, by value in Pascal, by
reference in FORTRAN. The length in bytes of the program name.
This must always be a positive integer.

nodename Packed array of characters (Pascal); word array
(FORTRAN), by reference. A variable length array of ASCII
characters identifying the node on which the child program resides. The
syntax of the node name is node [. domain[.organization]], which is
further described in “Node Names” of the “Introduction” section and in
“Nodename Parameter” of the “Network Interprocess Communication”
section of this manual.

Default: You may omit the organization, organization and domain, or all
parts of the node name. When organization or organization and domain
are omitted, they will default to the local organization and/or domain. If
the nodelen parameter is set to zero, nodename is ignored and the node
name defaults to the local node.

nodelen 32-bit non-negative integer, by value in Pascal, by
reference in FORTRAN. Length in bytes of the nodename parameter.
If nodelen is zero (0), the nodename parameter is ignored, and the child
program is scheduled on the same node as the parent. A fully-qualified
node name length may be 50 bytes long.

login Packed array of characters (Pascal); word array
(FORTRAN), by reference. A logon sequence for the (local or
remote) node on which the child program is to be scheduled. login is an
RTE-A logon without the password (defined in the password parameter
described below). RPM needs the logon name to logon to the local or
remote node.

6-10 Remote Process Management

loginlen

password

passwdlen

flags

RPMCREATE

32-bit non-negative integer, by value in Pascal, by
reference in FORTRAN. The length in bytes of the logon sequence.
The maximum length for a logon on RTE-A is 16 bytes. If Ioginlen is
zero (0), passwdlen must be zero.

When the Ioginlen and passwdlen are both zero and nodename is the
local node, the child program is scheduled and attached to the parent
program’s session. Even if the session-sharing flag (£E1lags [31]) is not set
to disable session-sharing, the child program will session-share with the
parent program in this case.

If nodename is NOT the local node and Ioginlen is zero, RPMCreate
will return an error in result.

Packed array of characters (Pascal); word array
(FORTRAN), by reference. A variable length array with the
password for the RTE-A logon specified in 1ogin. If no password is
required, the passwdlen parameter must be zero (0).

32-bit non-negative integer, by value in Pascal, by
reference in FORTRAN. The length in bytes of the password
parameter. If passwdlen is zero (0), password is ignored. The
maximum password length in RTE-A is 14 bytes.

32 bits, by reference. A 32-bit map of special request bits
representing various functions. Refer to “Flags Parameter” in the
“Network Interprocess Communication” section for explanations of the 32
special request bits and how to use them in Pascal/1000 and FORTRAN 77.
The following flags are defined on input (bit 1 is the most significant bit);
all other flags must be set to zero:

e flags[2] —wait for child (input). When set, this flag causes the
calling parent program to wait until the child program terminates.

The default is zero (0) for no waiting. The parent program resumes
execution immediately after it is notified that the child program is
successfully scheduled or an error occurs. Check the result
parameter for an error.

e flags[31] —session-sharing (input). When set, this flag causes
the child program to share a session with other child programs. The
parent must set this bit for each child that is to share the same
session. Refer to “Session-Sharing Among Child Programs” later in
this section for more details on how child programs share sessions.

The default is zero (0) for no session-sharing—the child program is
scheduled in a new session.

Remote Process Management 6-11

RPMCREATE

opt

pd

6-12

Regardless of how £lags [31] is set, session-sharing will occur on
the local node in the parent program’s session if nodename and
loginlen are specified as follows:

e nodename specifies the local node or nodelen is zero.
e JIoginlen is zero.

e flags[32] —dependent (input). When set, this flag causes the
scheduled child program to be dependent on the parent program.
When the parent program terminates, the child program terminates
automatically.

The default is zero (0) making the child program independent. The
scheduled child program continues executing on its own even after
the parent program terminates. Refer to “Terminating Dependent
and Independent Child Programs” later in this section for more
information.

Byte array (Pascal), Word array (FORTRAN), by
reference. An array of options and associated information. The format
of an opt array is the same as the NetIPC opt. Refer to “Opt Parameter”
in the “Network Interprocess Communication” section of this manual for a
detailed explanation. The options are equivalent to some RTE-A
commands and calls dealing with program scheduling. Refer to the RTE-A
User’s Manual and RTE-A Programmer’s Reference Manual for more
information on the RTE-A commands and calls.

A detailed description of RPMCreate options is given later in this section
under the subsection, “RPMCREATE Options.” A list of RPMCreate
options is presented in Table 6-2.

If no options are specified, the child program is assumed to reside in the
current working directory of the session to which it logged on or in the

: :programs directory. RPM causes the child program to be restored with
the clone name returned by FmpRpProgram. The child program is then
scheduled with an EXEC 10 (immediate schedule without wait) call with no
parameters.

The total length of the opt array must be 996 bytes or less.

Byte array (Pascal), word array (FORTRAN), by
reference. An array of 16 bytes containing a unique program descriptor
returned by RPM. This program descriptor is used to identify the
scheduled child program. This value, randomly generated, is presumed to
be unique across all nodes. A valid program descriptor is always a non-zero
value. If RPMCreate is unsuccessful, pd is set to all zeroes.

The program descriptor is used in subsequent RPM calls to identify the
child program.

Remote Process Management

result

RPMCREATE

32-bit non-negative integer, by reference. The result of
the RPMCreate request; zero if no error. If result is not zero, an error
has occurred. Errors are defined in the NS-ARPA/1000 Error Message and

Recover Manual.

Table 6-2. RPMCreate Options

Numeric Code Description RTE-A Equivalent
Group 1:
23000 Set working directory name FmpSetWorkingDir
Group 2:
23010 Restore program RP command
Group 3:
20000 Pass string none
23020 Assign partition AS command
23030 Set program priority PR command
23040 Change working set size WS command
23050 Change VMA space size vS command
23060 Change CDS code size CD command*
23070 Change CDS data size DT command*
*not exactly like RTE
Group 4: If used, only one can be specified:
23080 Time list scheduling EXEC 12 call
23090 Immediate schedule w/o wait EXEC 10 call
23100 Queue schedule w/o wait EXEC 24 call
23110 Run program FmpRunProgram

Discussion

RPMCreate enables the calling program to schedule another program. It must be the first RPM
call made by a parent to schedule a child program. The child program must be an executable file
on the local or at a remote system. In RTE, an executable file is a type 6 file. If a full path name
is not given, the type 6 file must be in the search path of the child’s session. Search paths are
documented in the RTE PATH command in the RTE-A User’s Manual.

By default, RPM creates a new session for the child program on the specified node (nodename
and nodelen parameters). RPM uses the logon specified in the 1ogin parameter and the
password in password. RPM schedules the child program to execute with an RTE EXEC 10
call, and the parent resumes executing itself.

Remote Process Management 6-13

RPMCREATE

RPMCreate returns a unique program descriptor to the parent program identifying the child
program. This program descriptor is used in subsequent RPMControl and RPMKill calls from
the parent program. The parent can use an RPMControl call to send control requests to the
child program. The RPMControl call can also be used to receive status information regarding
the child program. To terminate the child program, the parent should use the RPMKi11 call. The
child can also be terminated automatically (without an RPMKi11) when the parent terminates.
Refer to “Terminating Dependent and Independent Child Programs” later in this section for more
information.

A program may issue up to 31 RPMCreate calls. If more calls are needed, the parent must issue
RPMK1i11 calls for the already scheduled child programs. This is necessary even if they have
already been terminated by another means to help RPM clean up and re-use memory. If there is
not enough memory to create a child program, RPM generates an “Insufficient memory to create
a child program” error (error code 10).

The parent program can also send a string to the child in the RPMCreate call with option 20000.
The string is defined as part of the opt array parameter. The child program uses the
RPMGetString call to retrieve information from the parent program. The child program must
be a CDS program if it makes a RPMGetString call. If the child program is not using
RPMGetString, it can be either a CDS or a non-CDS program.

The child program can itself become a parent program by issuing an RPMCreate call. There is no
upper limit to this hierarchy. As long as there are resources available for scheduling programs
(such as ID segments, sessions, memory partitions), a child can become a parent and schedule
another child which then becomes a parent, and so on.

The child can be scheduled to share a session with other child programs. Refer to
“Session-Sharing Among Child Programs” later in this section.

For more programming information, refer to the “RPM Programming Considerations” subsection
earlier in this section.

Programs Scheduled by RPM Child Programs

RPM child programs should avoid other methods of scheduling programs, such as with EXEC and
DEXEC. Such programs are not considered to be RPM child programs. RPM cannot monitor
these non-RPM programs. Programs not under RPM’s control may terminate without RPM’s
knowledge and also cannot be accessed by any RPM call. RPM programs that use the RTE
DTACH and ATACH programming calls are also not supported for the above reasons.

If you want to schedule a program on the local node, use RPMCreate and specify the local node
in the nodename and nodelen parameters. Then the child program will not be unexpectedly
terminated.

Figure 6-2 illustrates two different cases of scheduling a program. In the first case, the child
program (Child 1) has scheduled another child program (Child 2). Child 2 will continue to
execute after Child 1 terminates. In the second case, the child program (Child 1) has scheduled a
child program (Child 2) in its session using a call such as EXEC 10 or EXEC 24. This non-RPM
program will be terminated by the system if Child 1 terminates and if there are no other RPM
child programs running in that session. The session is logged off when there are no more child
programs running in that child’s session. The session logging off causes the non-RPM program to
be automatically terminated.

6-14 Remote Process Management

parent

RPM

SESSION

parent

RPM

Child 1

RPMCreate

Child 2

SESSION

Child 1

EXEC

Child 2

RPMCREATE

When child 1 completes, Child 2
continues to execute in the
session. If no other child
programs are scheduled, the
session is logged off after
Child 2 terminates.

Session and Child 2 are
destroyed when Child 1
completes.

Figure 6-2. Example of Child Programs Scheduling Another Program

Terminating Dependent and Independent Child Programs

The dependent bit of the f1ags parameter determines whether the new child program will be
dependent (bit is set) on its parent or independent (bit is clear; the default). Dependent mode
ensures that the new child program will not become an “orphan” in the event of a program,
system, or network link failure. A dependent child program will terminate under any one of the
following conditions:

e RPMKill has been called. (RPMKill can terminate either an independent or dependent
child program.)

e The parent program terminates before calling RPMKi11.

e The remote communication line goes down. Either NS-ARPA has been shutdown or a
transport problem has occurred.

e The system on which the parent is running fails.

Remote Process Management 6-15

RPMCREATE

e The ID segment of the RPM monitor has been removed (the RTE OF,program,ID command
was entered).

If the child program is independent, it continues to execute until it terminates on its own or until it
is explicitly terminated by RPMKill. Independent mode is less costly in terms of resources: the
connection set up for the RPMCreate is not maintained after the child program is scheduled.

Session-Sharing Among Child Programs

If the session-sharing bit of the f1ags parameter is set, that child program is regarded as
shareable. RPMCreate tries to schedule the child program in a session in which other child
programs may be residing. However, RPM cannot always guarantee that the child program will
actually share a session. In order for multiple child programs to reside in an RPM-created session
(as distinguished from a parent’s session), three criteria must be satisfied:

e All the programs must have been scheduled using RPMCreate with the session-sharing bit of
the f1ags parameter set. Child programs scheduled with this bit set to zero cannot share
sessions with programs which have this bit set. The former child programs are each scheduled
in another dedicated session.

e All the programs must have been scheduled using RPMCreate from the same parent
program or from different parent programs residing within the same session on the local
node. Parent programs that are running in different local sessions will always schedule child
programs in different sessions.

e All the programs must have the same logon string (1ogin and Ioginlen parameters) and it
cannot be the same as the parent’s logon. All the necessary passwords (password and
passwdlen parameters) must match.

Figure 6-3 on the following page shows examples of how child programs can share sessions.

The child program will share the parent program’s session on the local node if nodename and
loginlen are specified as follows:

® nodename specifies the local node or nodelen is zero.
e JIoginlen is zero.

In the above case, the session-sharing bit is either set or not set. Session 84 in Figure 6-3 shows an
example of a child program in a parent’s session. Table 6-3 summarizes where sessions are
created.

6-16 Remote Process Management

NODE A

RPMCREATE

NODE B

Session 83

The following 3 programs all have
the session-sharing flag set;

the same nodename, login,and
password are specified:

Parent Program X schedules
Parent Program X schedules
Parent Program Y schedules

Session 137

Child Program XC1l
Child Program XC2
Child Program YC1l

The following program did not set
the session-sharing flag; the same
nodename, login, and password

are specified:

Parent Program Z schedules

Session 138

Child Program ZzC1l

Session 84

No session-sharing flag set:

Parent Program P schedules

Session 139

Child Program PC1l

nodelen, loginlen, and passwdlen
are zero; session-sharing flag is
either set or not set:

Parent Program Q schedules
Child Program PC2 on the
local node in Parent Program
Q’'s session.

Child Program PC2

Figure 6-3. Parent-Child Relationships When Session-Sharing

Table 6-3. Where Sessions Are Created

Value of Value of
nodelen Joginlen

Where Session is Created

nodelen = 0 loginlen = 0

Parent’s node, parent’s session.

nodelen = 0 loginlen not 0

Parent’s node, new session.

nodelen not 0 loginlen = 0

Not permitted; error.

nodelen not 0 loginlen not 0

Remote node, new session; could be parent’s
node if nodename is the parent’s node.

Remote Process Management 6-17

RPMCREATE

RPMCREATE Options

At the same time that a child program is scheduled, some equivalent RTE-A commands can be

sent

to the child program using the RPMCreate options. Under the opt parameter description of

RPMCreate, Table 6-3 lists RPMCreate options. The format and contents of the opt parameter
are described previously in “Opt Parameter” of the section, “Network Interprocess
Communication.”

Here are some guidelines when specifying these options.

No Options Specified. If no options are specified, the child program is assumed to reside in
the current working directory of the specified session (from Iogin and Ioginlen) or in the
: :programs directory. RPM causes the child program to be restored with the name
returned by FmpRpProgram. The child program is then scheduled with an RTE EXEC 10
(immediate schedule without wait) call with no parameters.

Option Groups. RPMCreate request options are divided into four groups. Options in an
earlier group, if specified, must be completely specified before options in a later group can be
given. The Group 1 option must be specified before any Groups 2, 3, or 4 option is specified.
The Group 2 option must be specified before any Group 3 or Group 4 option is specified.
Group 3 options must be specified before any Group 4 option is specified. Only one Group 4
option can be specified. All other options after a Group 4 option is specified are ignored.

For example, if a parent program wants to both set the working directory (Group 1 option
23000) and restore the child program (Group 2 option 23010), the parent must specify the
Group 1 option (23000) first.

If a Group 1, 2, or 3 option is specified more than once, no error occurs. Instead, the last
version of that option takes affect. For example, if the priority option (23030) is specified
twice, the second priority option is executed. An exception is the pass string option 20000,
because more than one string can be passed with this option.

Group 4 Scheduling Options. Group 4 options cause the child program to be scheduled. No
other options (not even pass string option, 20000) can be specified after a Group 4 option.

If no Group 4 option is specified, the EXEC 10 (immediate schedule without wait) call is
issued after the other options have been processed. No parameters are passed to the child
program. Only one Group 4 option can be specified within an RPMCreate call.

Schedule With Wait. The equivalent of the RTE-A EXEC 9 (immediate schedule with wait)
and EXEC 23 (queue schedule with wait) calls can be achieved in RPM with options 23090
and 23100, respectively, and with the wait bit set in the f1ags parameter.

Refer to the RTE-A User’s Manual and RTE-A Programmer’s Reference Manual for more
information on the equivalent RTE commands and calls.

6-18

Remote Process Management

RPMCREATE

Adding Options Into the Opt Array

The following subsections give detailed explanations of the four option groups. The options and
related data are placed into the opt array by using the AddOpt call. This call is documented in
“Special NetIPC Calls” in the “Network Interprocess Communication” section. The AddOpt call
uses all the parameters listed below. However, the following subsections present only the
optioncode, datalength, and data parameters, because these are the parameters that have
specific values for each RPMCreate option.

Syntax

ADDOPT (opt, argnum, optioncode , datalength, data, error)

AddOpt Parameters

opt

argnum

optioncode

datalength

data

error

Byte array (PASCAL),; Word array (FORTRAN), by
reference. The opt parameter to which you want to add an argument.
Refer to “Opt Parameter” in the “Network Interprocess Communication”
section for information on the structure and use of this parameter.

The total length of the opt array must be 996 bytes or less.

l6-bit integer, by value in Pascal, by reference in
FORTRAN. The number of the argument to be added. The first argument
number is zero.

l6-bit integer, by value in Pascal, by reference in
FORTRAN. An RPMCreate option code. These codes are explained in the
subsequent subsections.

l6-bit integer, by value in Pascal, by reference in
FORTRAN. The length in bytes of the data to be included. This information
is provided in each RPMCreate option description on the following pages.

Array, by reference. A variable length array of data to be passed to the child
program. Null strings are valid.

16-bit integer, by reference. The error code returned; zero if no error. Error
codes are documented in the NS-ARPA/1000 Error Message and Recover
Manual.

Remote Process Management 6-19

RPMCREATE

ADDOPT Example

The following example shows a Pascal program fragment that adds the pass string option (option
code 20000) and data to the opt parameter.

6-20

{InitOpt initializes the opt array to contain two options --
both for passing strings.}

INITOPT (opt, 2, result) ;

{Arddopt is called to add 5 bytes from the data0 array.
The first argument of the opt array is the number zero.
20000 is the option code for passing strings.}

ADDOPT (opt,0,20000,5,data0l, result) ;

{Addopt is called to add another 5 bytes from the datal array.
The second argument is the number one.}

ADDOPT (opt,1,20000,5,datal, result) ;
{RPMCreate can now be called with the opt parameter.}

RPMCREATE (progname, namelen, nodename,nodelen, login, loginlen,
password, passwdlen, flags, opt,pd, result) ;

Remote Process Management

RPMCREATE

RPMCreate Option 20000—Pass String

RTE-A System Equivalent: none.

AddOpt Parameters

optioncode l6-bit integer, by value in Pascal, by reference in
FORTRAN. 20000 to indicate the “Pass String” option.

datalength l6-bit integer, by value in Pascal, by reference in
FORTRAN. The length in bytes of data which is to be included in the opt
array. A maximum of 256 bytes can be passed.

data Array, by reference. A variable length array of data to be passed to
the child program. Null strings are valid.

6o 1 2 3 4 5 6 7 8 9 10 ... 255 bytes

data

Discussion

The pass string option (20000) is a Group 2 option. This option can be specified more than once
by the parent program for each string to be passed to the child program. Strings are queued to the
child program in the order in which they are specified. The child program would issue an
RPMGetString for each string it wants to obtain. For example, if three option 20000’s were
specified in opt with three strings, the child would issue three RPMGetString calls to retrieve
the strings.

This option must be specified before any Group 4 option is specified.

All child programs invoking the RPMGetString call must be compiled as CDS programs.

Remote Process Management 6-21

RPMCREATE

RPMCreate Option 23000—Set Working Directory

RTE-A FMP Equivalent: FmpSetWorkingDir call (documented in the RTE-A Programmer’s
Reference Manual).

AddOpt Parameters

optioncode l6-bit integer, by value in Pascal, by reference in
FORTRAN. 23000 to indicate “Set Working Directory” option.

datalength l6-bit integer, by value in Pascal, by reference in
FORTRAN. The length in bytes of data which is to be included in the opt
array. The data is a working directory name. The datalength can be
up to 63 bytes for an RTE working directory name.

data Packed array of characters (Pascal); word array
(FORTRAN), by reference. A packed array of characters specifying
the working directory. The directory name must be fully-qualified. An
exception would be if it is a subdirectory of the current working directory
for the session created with the 1ogin parameter of RPMCreate. In this
latter case, the current directory path can be omitted.

6o 1 2 3 4 5 6 7 8 9 10 ... 62 bytes

data

Discussion

The set working directory option (23000) is a Group 1 option that changes the working directory
for the child program. If this option is specified more than once, no error occurs. Instead, the last
version of this option takes affect. This option must be specified before any Group 2, 3, or 4
option is specified.

The working directory set by this option is used when no directory is specified in the progname
parameter of RPMCreate. This working directory is searched first by the file system in the file
search path. The new working directory can be a sub-directory.

If the set working directory option is not specified, the child program’s working directory is the
one currently associated with the session created with the Togin parameter. The child’s search
path is set to the current search path of that session. More information on search paths is
documented in the RTE-A User’s Manual under the PATH command (the “Modify UDSP”
command).

A child program already running in that session may set the search path to override the default.

In shared sessions, the current working directory may have been changed by a previously
scheduled child program in the same session. The parent program should always set the correct
working directory when scheduling a child program in shared sessions. Also the working directory
of a shared session may be changed by a new and unsuccessful RPMCreate call.

6-22 Remote Process Management

RPMCREATE

RPMCreate Option 23010—Restore Program

RTE-A FMP Equivalent: FmpRpProgram call (documented in the RTE-A Programmer’s
Reference Manual).

AddOpt Parameters

optioncode lé6-bit integer, by value in Pascal, by reference in
FORTRAN. 23010 to indicate the “Restore Program” option.

datalength l6-bit integer, by value in Pascal, by reference in
FORTRAN. The length in bytes of data which is to be included in the opt
array. Must be only one of the following values: 0, 6, or 7. No other values
are allowed.

e If the length is 0, there is no data. The child program is restored
under a system-assigned name. The child is always restored as a
permanent ID segment.

e If the length is 6, it is assumed that the program name is specified in
data and no cloning is to occur.

e If the length is 7, both the program name and letter C are specified.
The letter C signifies to create a clone name.

data Packed array of characters (Pascal); word array
(FORTRAN), by reference. A six- or seven-byte array. The first six
bytes is the name under which the child program should be restored. If the
name is not specified, the program will be restored under a system-assigned
name. The returned name is the first five characters of the child program
name (minus the directory path and file type extension).

If the seventh byte contains the character C, a clone name is to be created.
If the specified or assigned name from the first six bytes is already assigned,
a clone name is created. For more information about cloning, refer to the
RTE-A User’s Manual.

0 1 2 3 4 5 6 bytes

child program name| C

Discussion

The restore program option (23010) is a Group 2 option. If this option is specified more than
once, no error occurs. Instead, the last version of this option takes affect. This option must be
specified before any Group 3 or 4 option is specified.

The restore program option invokes the FmpRpProgram routine to restore a program from an
executable file and create an ID segment for the program. If the restore program option is not
specified, the child program is automatically restored. The child is always restored as a permanent
ID segment. Therefore, the ID segment is not released as soon as the child program terminates.
Within 5 seconds, the NS-ARPA/1000 cleanup routine, UPLIN, will release the ID segment.

Remote Process Management 6-23

RPMCREATE

RPMCreate Option 23020—Assign Partition

RTE-A System Equivalent: AS command (documented in the RTE-A User’s Manual).

AddOpt Parameters

optioncode l6-bit integer, by value in Pascal, by reference in
FORTRAN. 23020 to indicate the “Assign Partition” option.

datalength l6-bit integer, by value in Pascal, by reference in
FORTRAN. The length in bytes of data which is to be included in the opt
array. Must be only one of the following values: 2 or 3. No other values
are allowed.

e If the length is 2, the 16-bit partition number is specified. The
default is to assign the data section of the program to the reserved
partition.

e If the length is 3, the 16-bit partition number should be followed by
a C for code section or D for data section.

data Array, by reference. A three-byte array. The first two bytes is a
16-bit integer specifying the reserved partition number in which the child
program is to run.

The third byte is the character C or D to indicate either the code (C) or data
(D) section. The code or data section of the program is assigned to the
reserved partition. This argument applies only to CDS child programs.
This argument can be in either upper or lower case.

0 1 2 bytes

partition [C or
number D

Discussion

The assign partition option (23020) is a Group 3 option. This option causes the RTE MESSS
command to be invoked to execute the RTE-A system AS command. This option causes a reserved
memory partition to be assigned to the child program. The assign partition option can be specified
only once, unlike the other Group 3 options. This option must be specified before any Group 4
option is specified.

The RTE-A system memory is divided at bootup time into dynamic and reserved partitions.
Normally, when a program is run, it is assigned memory as required from the dynamic memory.
Reserved partitions are partitions of fixed sizes that can be reserved for specific programs.
Partition numbers are assigned sequentially from one as they are defined in the boot command
file.

All child programs invoking any RPM call must be compiled as CDS programs. All child
programs to be assigned to a code or a data partition must be CDS child programs. All other child
programs may be either CDS or non-CDS.

6-24 Remote Process Management

RPMCREATE

RPMCreate Option 23030—Change Program Priority

RTE-A System equivalent: PR command (documented in the RTE-A User’s Manual).

AddOpt Parameters

optioncode l6-bit integer, by value in Pascal, by reference in
FORTRAN. 23030 to indicate the “Change Program Priority” option.

datalength l6-bit integer, by value in Pascal, by reference in
FORTRAN. The length in bytes of data which is to be included in the opt
array. Must be a 2. No other values are allowed.

data 16-bit integer, by reference. An integer from 1 to 32767
specifying the child program priority.

0 1 bytes

priority

Discussion

The set priority option (23030) is a Group 3 option. This option invokes the RTE MESSS call with
the RTE-A system PR command. This option sets the priority of the child program. If this option

is specified more than once, only the last one will take effect. This option must be specified before
any Group 4 option is specified.

All programs running under RTE-A have a priority number which is recorded in the respective
program ID segments. The priority number can be assigned when the program is written or when
it is linked.

The priority number may be in the range of 1 to 32767, with smaller numbers representing higher
priorities. Typical values for user application software would be in the range of 50 to 200. Higher
priority real-time and system programs may be in the range of 1 to 40.

Remote Process Management 6-25

RPMCREATE

RPMCreate Option 23040—Modify Working Set Size

RTE-A System equivalent: WS command (documented in the RTE-A User’s Manual).

AddOpt Parameters

optioncode l6-bit integer, by value in Pascal, by reference in
FORTRAN. 23040 to indicate the “Modify Working Set Size” option.

datalength lé6-bit integer, by value in Pascal, by reference in
FORTRAN. The length in bytes of data which is to be included in the opt
array. Must be a 2. No other values are allowed.

data l16-bit integer, by reference. An integer from 2 to 1022
specifying the working set size in pages.

0 1 bytes

working
set size

Discussion

The modify working set size option (23040) is a Group 3 option. This option invokes the RTE
MESSS call with the RTE-A system WS command. This option sets the working set size for the
child program. If this option is specified more than once, only the last one will take effect. This
option must be specified before any Group 4 option is specified.

VMA programs are those that utilize an RTE-A feature which enables execution of programs
requiring a very large amount of data storage. The data for a VMA program is contained in an
area on disk called the Virtual Memory Area (VMA). The portion of data being processed is
moved from disk to an area in memory called the Working Set (WS) so data is being transferred
between VMA and WS as necessary during program execution.

6-26 Remote Process Management

RPMCREATE

RPMCreate Option 23050—Modify VMA Size

RTE-A System equivalent: VS command (documented in the RTE-A User’s Manual).

AddOpt Parameters

optioncode l6-bit integer, by value in Pascal, by reference in
FORTRAN. 23050 to indicate the “Modify VMA Size” option.

datalength l6-bit integer, by value in Pascal, by reference in
FORTRAN. The length in bytes of data which is to be included in the opt
array. Must be a 2. No other values are allowed.

data 16-bit integer, by reference. An integer from 32 to 32767
specifying the virtual EMA size in pages.

0 1 bytes

virtual
EMA size

Discussion

The modify VMA size option (23050) is a Group 3 option. This option invokes the RTE MESSS
call with the RTE-A system VS command. This option changes the VMA size requirements of a
child program. If this option is specified more than once, only the last one will take effect. This
option must be specified before any Group 4 option is specified.

Remote Process Management 6-27

RPMCREATE

RPMCreate Option 23060—Modify Code Partition Size

RTE-A System equivalent: CD command (documented in the RTE-A User’s Manual).

AddOpt Parameters

optioncode l6-bit integer, by value in Pascal, by reference in
FORTRAN. 23060 to indicate the “Modify Code Partition Size” option.

datalength l6-bit integer, by value in Pascal, by reference in
FORTRAN. The length in bytes of data which is to be included in the opt
array. Must be a 2. No other values are allowed.

data l16-bit integer, by reference. A 16-bit integer specifying the
maximum number of code segments permitted to remain in memory at
once. This number must be less than or equal to the actual number of code
segments for the program.

0 1 bytes
code
partition
size

Discussion

The modify code partition size option (23060) is a Group 3 option. This option invokes the RTE
MESSS call with the RTE-A system CD command. This option sets the code partition size of the
child program which is a CDS program. If this option is specified more than once, only the last
one will take effect. This option must be specified before any Group 4 option is specified.

CDS programs have two areas of memory associated with them, one for code (the program itself)
and one for data.

The modify code partition size option changes the size allocation of the code section. It changes
the amount of memory the code will use by changing the number of code segments (pieces of the
program) which will be kept in memory at one time; the other pieces will be kept on the disk. The
RTE-A system will keep the most actively used pieces of the program in memory, leaving the
others on the disk.

6-28 Remote Process Management

RPMCREATE

RPMCreate Option 23070—Modify Data Partition Size

RTE-A System equivalent: DT command (documented in the RTE-A User’s Manual).

AddOpt Parameters

optioncode l6-bit integer, by value in Pascal, by reference in
FORTRAN. 23070 to indicate the “Modify Data Partition Size” option.

datalength l6-bit integer, by value in Pascal, by reference in
FORTRAN. The length in bytes of data which is to be included in the opt
array. Must be a 2. No other values are allowed.

data l6-bit integer, by reference. A 16-bit integer specifying the size
of the data partition in pages.
0 1 bytes
data
partition
size

Discussion

The modify data partition size option (23070) is a Group 3 option. This option invokes the RTE
MESSS call with the RTE-A system DT command and is only used for CDS child programs.

This option changes the size allocation of the data section for a CDS child program.

If this option is specified more than once, only the last one will take effect. This option must be
specified before any Group 4 option is specified.

Remote Process Management 6-29

RPMCREATE

RPMCreate Option 23080—Time Scheduling

RTE-A System Equivalent: EXEC 12 call (documented in the RTE-A Programmer’s Reference

Manual).

AddOpt Parameters

optioncode l6-bit integer, by value in Pascal, by reference in
FORTRAN. 23080 to indicate the “Time Scheduling” option.

datalength l6-bit integer, by value in Pascal, by reference in
FORTRAN. The length in bytes of data which is to be included in the opt
array. Must be 2, 4, 6, 8, 10, or 12 bytes. No other values are allowed. The
exact length depends on the parameters specified.

e If the length is 2, only units is specified. The call is an Absolute
Start Scheduling call to schedule the child program immediately.

e If the length is 4, the units and often values are specified. The
call is an Absolute Start Scheduling call to schedule the child
program immediately and how often it should be scheduled.

e If the length is 6, the values for units, often, and delay/hour
are specified. If the delay/hour parameter is negative, the call is
an Initial Offset Scheduling call. If the delay/hour parameter is
non-negative, the call is an Absolute Start Scheduling call.

e [f the length is 8, the values for units, often, hour, and min are
specified. The call is an Scheduling Absolute Starting Time call.

e If the length is 10, the values for units, often, hour, min, and
sec are specified. The call is an Scheduling Absolute Starting Time
call.

e If the length is 12, the values for units, often, hour, min, sec,
and msec are specified. The call is an Scheduling Absolute Starting
Time call.

data Array, by reference. A2 to 12 byte array with the following
contents:
0 1 2 3 4 5 bytes
units often delay
6o 1 2 3 4 5 6 7 8 9 10 11 bytes
units |often | hour | min sec msec

6-30 Remote Process Management

RPMCREATE

units A resolution code that specifies the time units. In
conjunction with the parameter often, units specifies
the time between each execution of the child program.

units is one of the following values:

1 = tens of milliseconds

2 = seconds
3 = minutes
4 = hours
often An integer value (0 to 4095) indicating the execution

multiple or how often the program is to run.

delay The initial offset. A negative number indicating the
starting time of the first execution (not zero).

The following parameters collectively specify the starting time:

hour The starting hour (0 to 23).

min The starting minute (0 to 59).

sec The starting second (0 to 59).

msec The starting tens of milliseconds (0 to 99).

Discussion

The initial offset scheduling option (23080) is a Group 4 option. Only one Group 4 option can be
specified. No other option can be specified after a Group 4 option.

This option invokes the RTE EXEC 12 call (Initial Offset Scheduling/Absolute Start Scheduling),
which schedules a program for execution at specified time intervals, starting either after an initial
offset delay, or at a particular absolute start time. The values of the parameters for this call
determine whether the child program should be scheduled using Initial Offset Scheduling and
Absolute Start Scheduling.

The value of delay or hour determines whether the child will be scheduled with an absolute
start time or an initial offset time. If this parameter is omitted, its value defaults to zero, and the
child program will be scheduled at an absolute start time.

Remote Process Management 6-31

RPMCREATE

RPMCreate Option 23090—Program Scheduling (Immediate No Wait)

RTE-A System Equivalent: EXEC 10 call (documented in the RTE-A Programmer’s Reference

Manual).

AddOpt Parameters

optioncode

datalength

data

l6-bit integer, by value in Pascal, by reference in
FORTRAN. 23090 to indicate the “Program Scheduling—Immediate No
Wait” option.

l6-bit integer, by value in Pascal, by reference in
FORTRAN. The length in bytes of data which is to be included in the opt
array. Must be one of the following values: 0, 2, 4, 6, 8, 10, 13, or greater
than 13 bytes. Any parameter that is not specified defaults to zero. The
exact length depends on the parameters specified:

e If the length is 0, all parameters are omitted and their default value
is zero.

e If the length is 2, only pr1 is specified.

e If the length is 4, pr1 and pr2 are specified.

e Ifthe length is 6, pri1, pr2, and pr3 are specified.

e [Ifthelengthis 8, pri, pr2, pr3, and pr4 are specified.

e Ifthe length is 10, pri1, pr2, pr3, pr4, and pr5 are specified.
e [f the length is 13 or more, all seven parameters are specified.

Array, by reference. A variable length array with the following
contents:

o 1 2 3 4 5 6 7 8 9 10 11 ... n n + 1 Dbytes

prl pr2 pr3 pr4 pr5 bufr bufln

prl, pr2, pr3, Five optional integer parameters to be passed to the

pr4, prs child program. If any of the parameters pri, pr2, pr3,
pr4, or pr5 are omitted, the remaining parameters all
default to 0.

6-32 Remote Process Management

Discussion

bufr

bufln

RPMCREATE

A variable length buffer containing data to be sent to the
child program. The child program can recover the
buffer by using the RTE GETST subroutine or the RTE
string passage EXEC 14 call. Refer to the RTE manual
for usage. NOTE: Any string that is retrieved with
GETST must be structured so that two leading commas
exist in the string. GETST discards the information
preceding the two commas and returns the string
following them.

The length of bufr. If a positive integer, bufln
indicates the number of words. If a negative integer,
bufln indicates the number of bytes in bufzr. If the
bufr parameter is specified, the last two bytes of data
are bufln.

The program scheduling option (23090) is a Group 4 option. Only one Group 4 option can be
specified. No other option can be specified after a Group 4 option.

This option invokes the RTE EXEC 10 call to immediately schedule a child program for execution
without wait. The affect of an EXEC 9 call, used to immediately schedule a program with wait,
can be achieved by the parent program using option 23090 and setting the wait-for-child bit of the

flags parameter.

There is no provision for the child to pass parameters or return status back to the parent.

Option 23090 is also similar to the RTE XQ command, run program without wait.

Note that an error is returned in result if an attempt is made to schedule a program which is

already running.

Remote Process Management 6-33

RPMCREATE

ADDOPT Example

The following AddOpt example shows the parameters for the immediate no wait program
scheduling option. Note that the total length of the opt array is the buffer length plus 12 bytes for
the other six parameters (prl1, pr2, pr3, pr4, prs5, and bufln).

CONST

MAX BUFR LENGTH = 256;

IMMNOWAIT OPT LENGTH = MAX BUFR_LENGTH + 12; { add 12 bytes to buffer size
{ for parms 1 - 5 and buflen
{ to get total length of opt
{

data

TYPE
ImmNoWaitOptType = RECORD
CASE BYTE OF
0 : (Bytes : RpmOptDataType) ;
1 : (ImmNoWaitParml : Intlé6;
ImmNoWaitParm2 : Intlé6;
ImmNoWaitParm3 : Intlé6;
ImmNoWaitParm4 : Intlé6;
ImmNoWaitParm5 : Intlé6;
ImmNoWaitBufr : PACKED ARRAY [1..MAX BUFR LENGTH] OF CHAR;
ImmNoWaitBufLength : Intle6); { use negative value for bytes }
END; { ImmNoWaitOptType }

VAR
ImmNoWaitOpt : ImmNoWaitOptType;

BEGIN

WITH ImmNoWaitOpt DO
BEGIN
ImmNoWaitParml 1=
ImmNoWaitParm2 1=
ImmNoWaitParm3 1=
ImmNoWaitParm4 1=
ImmNoWaitParm5 := 05
ImmNoWaitBufr := 'ImmNoWait Buffer’;
ImmNoWaitBufLength -16;
END; { WITH ImmNoWaitOpt DO }

I
I
I

I

o O O o o

ADDOPT (RpmOpt , OptNum, 23090, IMMNOWAIT OPT LENGTH, ImmNoWaitOpt.Bytes,error) ;

6-34 Remote Process Management

e

RPMCREATE

RPMCreate Option 23100—Queue Program Scheduling

RTE-A System Equivalent: EXEC 24 call (documented in the RTE-A Programmer’s Reference

Manual).

AddOpt Parameters

optioncode

datalength

data

l6-bit integer, by value in Pascal, by reference in
FORTRAN. 23100 to indicate the “Queue Program Scheduling” option.

l6-bit integer, by value in Pascal, by reference in
FORTRAN. The length in bytes of data which is to be included in the opt
array. Must be one of the following values: 0, 2, 4, 6, 8, 10, 13, or greater
than 13 bytes. Any parameter that is not specified defaults to zero. The
exact length depends on the parameters specified:

e If the length is 0, all parameters are omitted and take their default
value to be zero.

e If the length is 2, only pr1 is specified.

e [If the length is 4, pr1 and pr2 are specified.

e Ifthe length is 6, pri1, pr2, and pr3 are specified.

e [Ifthelengthis 8, pri, pr2, pr3, and pr4 are specified.

e Ifthe length is 10, pri1, pr2, pr3, pr4, and pr5 are specified.
e [f the length is 13 or more, all seven parameters are specified.

Array, by reference. A variable length array with the following
contents:

o 1 2 3 4 5 6 7 8 9 10 11 ... n n + 1 Dbytes

prl pr2 pr3 pr4 pr5 bufr bufln

prl, pr2, pr3, Five optional integer parameters to be passed to the

pr4, prs child program. If any of the parameters pri, pr2, pr3,
pr4, or pr5 are omitted, the remaining parameters all
default to 0.

Remote Process Management 6-35

RPMCREATE

bufr

bufln

Discussion

A variable length buffer containing data to be sent to the
child program. The child program can recover the
buffer by using the RTE GETST subroutine or the RTE
string passage EXEC 14 call. Refer to the RTE manual
for usage. NOTE: Any string that is retrieved with
GETST must be structured so that two leading commas
exist in the string. GETST discards the information
preceding the two commas and returns the string
following them.

The length of bufr. If a positive integer, bufln
indicates the number of words. If a negative integer,
bufln indicates the number of bytes in bufzr. If the
bufr parameter is specified, the last two bytes of data
are bufln.

The queue program scheduling option (23100) is a Group 4 option. Only one Group 4 option can
be specified. No other option can be specified after a Group 4 option.

This option invokes the RTE EXEC 24 call to queue schedule a child program for execution
without wait. If a program with the same name is already executing, RPM waits for that program
to terminate before scheduling the child program. Otherwise, the child program is scheduled
immediately.

The affect of a EXEC 23 call, used to queue schedule a program with wait, can be achieved by the
parent program using option 23100 and setting the wait-for-child bit of the f1ags parameter.

There is no provision for the child to pass parameters or return status back to the parent.

Caution

Option 23100 should be used with extreme care and is recommended only for

child programs which execute only for a very short duration. If this option is
issued for a child program that is currently executing, RPM will suspend and will
not be able to process other requests that arrive while waiting for the currently
executing child program to terminate. If requests to RPM are frequent enough
and RPM suspends for a long time, this may cause many requests to be rejected.

6-36

Remote Process Management

RPMCREATE

ADDOPT Example

The following AddOpt example shows the parameters for the queue program scheduling option.
Note that the total length of the opt array is the buffer length plus 12 bytes for the other six
parameters (pri, pr2, pr3, pr4, pr5, and bufln).

CONST

MAX BUFR LENGTH = 256;

QUENOWAIT OPT LENGTH = MAX BUFR LENGTH + 12; { add 12 bytes to buffer size
{ for parms 1 - 5 and buflen
{ to get total length of opt
{

data

TYPE
QueNoWaitOptType = RECORD
CASE BYTE OF
0 : (Bytes : RpmOptDataType) ;
1 : (QueNoWaitParml : Intlé;
QueNoWaitParm2 : Intlé;
QueNoWaitParm3 : Intlé;
QueNoWaitParm4 : Intlé;
QueNoWaitParm5 : Intlé;
QueNoWaitBufr : PACKED ARRAY [1..MAX BUFR LENGTH] OF CHAR;
QueNoWaitBufLength : Intlé6) ; { use negative value for bytes }
END; { QueNoWaitOptType }

BEGIN

WITH QueNoWaitOpt DO
BEGIN
QueNoWaitParml t=
QueNoWaitParm2 HE
QueNoWaitParm3 1=
QueNoWaitParm4 t=
QueNoWaitParm5 := 0;
QueNoWaitBufr := 'QueNoWait Buffer’;
QueNoWaitBufLength := -16;
END; { WITH QueNoWaitOpt DO }

I
I
I

I

o O O o o

ADDOPT (RpmOpt , OptNum, 23100, QUENOWAIT OPT LENGTH, QueNoWaitOpt.Bytes,error) ;

Remote Process Management 6-37

o

RPMCREATE

RPMCreate Option 23110—Program Scheduling

RTE-A FMP Equivalent: FmpRunProgram call (documented in the RTE-A Programmer’s

Reference Manual).

AddOpt Parameters

optioncode

datalength

data

Discussion

l6-bit integer, by value in Pascal, by reference in
FORTRAN. 23110 to indicate the “Program Scheduling” option.

lé6-bit integer, by value in Pascal, by reference in
FORTRAN. The length in bytes of data which is to be included in the opt
array.

A variable length character string that contains the runstring. Note that the
X0 command must be specified at the beginning of the runstring, or RPM
will insert it. If the RU command is specified at the beginning of the
runstring, RPM replaces it with an XQ. Also, the program name should be
the same as the progname parameter of the RPMCreate call. An error is
returned if this is not the case. This program name will be replaced by
RPM by the name of the ID segment under which it is restored. The IH
option of the RTE RU (Run Program) command is not permitted to follow
the program name. Cloning can be inhibited by specifying option 23010
(Restore Program Option) beforehand in the opt array of the RPMCreate
call.

The last two bytes of data is a 16-bit integer indicating how
FmpRunProgram is to handle the string parameter. The possible values
are as follows:

1 The string is converted to uppercase and each group of one or more
consecutive blanks is converted to a comma.

0 The string is not altered.

0 1 2 n n+1 bytes

string 1 or O

RPM always schedules the child program with the RTE XQ command to avoid being suspended
while the child program is executing. To achieve the equivalent to an RU command, use option
23110 together with the wait-for-child bit of the f1ags parameter of the RPMCreate call.

6-38 Remote Process Management

RPMGETSTRING

Allows the child program to retrieve strings passed to it by the parent program.

Syntax

RPMGETSTRING (rpmstring, rpmstringlen, result)

Parameters

rpmstring Packed array of characters (Pascal); word array
(FORTRAN), by reference. A variable length array containing the
string passed in the opt parameter of the RPMCreate call which
scheduled this child program.

rpmstringlen 32-bit non-negative integer, by reference. On input,

(input/output) rpmstringlen is the maximum byte length allowed for the rpmstring.
On output, rpmstringlen indicates the actual length of the returned
rpmstring. A string longer than what the buffer can accommodate will
be truncated. On RTE-A the maximum string length retrieved with
RPMGetString is 256 bytes.

If there is no string received in rpmstring, an error is returned in
result.

result 32-bit non-negative integer, by reference. The result of
the RPMGetString request; zero if no error. If result is not zero, an
error has occurred. Errors are defined in the NS-ARPA/1000 Error Message
and Recovery Manual.

Discussion

The RPMGetString call allows a program scheduled by an RPMCreate call to obtain the string
passed to it by the parent program in the RPMCreate call. The RPMCreate call uses an opt
parameter which contains an option code of 20000 followed by the string. Refer to the explanation
of RPMCreate previously in this section.

The string obtained in this manner may contain any useful information. For example, it could
contain the name of a (call) socket belonging to the parent, along with the name of the node on
which the parent is executing. The scheduled child program can look up this socket name in order
to acquire a destination descriptor for it. After creating a socket of its own, it can establish a
connection to the parent program.

An RPM child program using RPMGetString must be compiled and linked as a CDS program.

Remote Process Management 6-39

RPMGETSTRING

If the opt parameter of RPMCreate contained more than one RPM string, issue as many
RPMGetString calls as necessary to retrieve all the strings. For example:

Parent program:

ADDOPT (Opt, 0, 20000, Lengthl, RpmStringl) ;
ADDOPT (Opt, 1, 20000, Length2, RpmString2) ;
ADDOPT (Opt, 2, 20000, Length3, RpmString3);
RPMCREATE (... Opt ...);

Child program:

RPMGETSTRING (RpmStringl, Lengthl, Result) ;
RPMGETSTRING (RpmStringZ, Length2, Result) ;
RPMGETSTRING (RpmString3, Length3, Result);

6-40 Remote Process Management

RPMKILL

Terminates a specified child program scheduled by an RPMCreate call.

Syntax

RPMKILL

Parameters

pd

nodename

nodelen

result

Discussion

(pd, nodename , nodelen, result)

Byte array (Pascal); Word array (FORTRAN), by
reference. An array of 16 bytes containing the program descriptor
returned by the RPMCreate call.

Packed array of characters (Pascal); word array
(FORTRAN), by reference. A variable length array identifying the
node on which the child program resides. The syntax of the node name is

node [.domain|[.organization]], which is further described in
“Node Names” of the “Introduction” section and in “Nodename
Parameter” of the “Network Interprocess Communication” section of this
manual.

Default: You may omit the organization, organization and domain, or all
parts of the node name. When organization or organization and domain
are omitted, they will default to the local organization and/or domain. If
the nodelen parameter is set to zero, nodename is ignored and the node
name defaults to the local node.

32-bit non-negative integer, by value in Pascal, by
reference in FORTRAN. Length in bytes of the nodename parameter.
If nodelen is zero (0), the nodename parameter is ignored. In this case,
it is assumed that the parent is either terminating a dependent child
program that it previously scheduled or the child program is on the local
node.

32-bit non-negative integer, by reference. The result of
the RPMK111 request; zero if no error. If result is not zero, an error has
occurred. Errors are defined in the NS-ARPA/1000 Error Message and
Recovery Manual.

The RPMKill call terminates a program that was scheduled by RPMCreate. The child program
is specified by its program descriptor, pd. Any program on any node may call RPMKill to
terminate an RPM program, as long as it has the correct program descriptor. RPMKi11 also
terminates a child session if both of the following conditions are true:

e The session was programmatically created by RPM.

e There are no more child programs running in that session.

Remote Process Management 6-41

RPM Program Examples

There are two sets of RPM programs that follow, the first parent-child pair is in Pascal/1000 and the
second pair is in FORTRAN 77. The Pascal programming examples are in your NS-ARPA/1000
software in /NS1000/EXAMPLES/RPM1.PAS (parent program) and in
/NS1000/EXAMPLES/RPM2 . PAS (child program). The FORTRAN 77 examples are in
/NS1000/EXAMPLES/PARENT.FTN (parent program) and in /NS1000/EXAMPLES/CHILD.FTN
(child program).

Each parent program uses the RPMCreate options to time schedule a child program. The
RPMControl call is also used to obtain the child program’s status. All the data declarations for
RPMCreate options are included in this example for your convenience. Not all the data
declarations were used for this parent program. For your own use, you can delete or comment out
the unused data declarations.

Each child program uses RPMGetString to retrieve strings passed by the parent program. The
child program must be a CDS program.

Pascal/1000 RPM Parent Program

SPASCAL ’'91790-18267 REV.5240 <870715.1002>"
S STANDARD LEVEL ’‘HP1000’ S
S CDS ON S
S CODE CONSTANTS OFF S
S DEBUG on $
}
NAME: RPM1
SOURCE: 91790-18267
RELOC: NONE
PGMR: VH

[ER—

MODIFICATION HISTORY

Date Programmer Description

052891 VH Modified to take nodeName/Logon/Passwd/directory
from the runstring.

This program calls RPMCREATE to create an RPM child and uses RPMCREATE
options to: set the child’s session working directory if specified by user
RP the child
send RPM data strings to the child
time schedule the child
The program also calls RPMCONTROL to report the status of the child.
In addition, data declarations are included for all the RPMCREATE options.

Usage: rpml <nodename> <login> [password] [directory]

e L R e e e R e R e La e e e

e e e e e e e e e e e

6-42 Remote Process Management

program rpml;
LABEL 999;
TYPE

{General-purpose types

Byte = 0..255;
Intle = —-32768..32767;
StringType = PACKED ARRAY [1..256]
CallNameType = STRING[25];
CONST
MAX PASSWD LENGTH = 256;
MAX LOGIN LENGTH = 256;
MAX NODENAME LENGTH = 50;
MAX PROGNAME LENGTH = 64;
MAX OPT BYTES = 996;
MAX DATA BUFFER BYTES = 982;
MAX BUFR LENGTH = 256;
MAX RPMSTRING LENGTH 256;
OPT DATA BYTES = 2;
NO_ERROR = O0;
MAX RUN STRING = 80;
TYPE
EnvStringType = PACKED ARRAY
NodeNameType = PACKED ARRAY
ProgramNameType = PACKED ARRAY
ProgramDescriptorType = PACKED ARRAY
RpmOptType = PACKED ARRAY
RpmOptDataType = PACKED ARRAY
FlagsType = RECORD
CASE Byte OF
0 : (bits : PACKED ARRAY [0..31]
1 : (int : INTEGER) ;
END; { FlagsType }

OF CHAR;

Max size for RPM protocol message

is 1024 bytes, including 28 bytes
for the RPM message header, so max
option array size is 1024 - 28 = 996

Used for RPMControl. 30 bytes for
RPM message header, 12 bytes for
opt array header and overhead, so
max is 1024 - 42 = 982

(Bytes) Used when passing buffers
while scheduling. Can be increased,
so long as

total opt array size is <= 996 bytes

Used when passing strings to child.
Can be increased, so long as total
opt array size is <= 996 bytes

— e Lt Y Lt Rt Y Ve e Lt R Ve Lt Rt Yaea e
—— o o o o o o o

Dummy size for option data byte array}

[1..MAX RUN STRING] of CHAR;
[1..MAX NODENAME LENGTH] OF CHAR;
[1..MAX PROGNAME LENGTH] OF CHAR;
[1..16] OF Byte;
[1..MAX OPT BYTES] OF Byte;
[1..0PT DATA BYTES] OF Byte;

OF BOOLEAN) ;

Remote Process Management 6-43

RpmDataBufferType = RECORD
CASE Byte OF

0 : (data bytes : PACKED ARRAY [1..MAX DATA BUFFER BYTES] OF Byte) ;

1 : (data words : PACKED ARRAY [1..MAX DATA BUFFER BYTES DIV 2] OF
Intleé) ;

END; { RpmDataBufferType}

RpmStringType = PACKED ARRAY [1..MAX RPMSTRING LENGTH] OF CHAR;
VAR

screen: Text;

rlen : intle;

rstring : EnvStringType; { the runstring }

Flags : FlagsType;

RpmOptCode : Intlé6;

RpmOpt : RpmOptType; { will contain opt entries for RPMCreate}

OptNum : Intlé6;

result : INTEGER; { used for RPM calls
error : Intlé6; { used for INITOPT and ADDOPT calls
CallName : CallNameType; { used by error reporting routines

—— o

{variables for RPMCreate

NodeNameLength, ProgNameLength, LoginLength, PasswdLength : Intlé6;
NodeName : NodeNameType;

Password, Login : StringType;

ProgramName : ProgramNameType;

ProgramDescriptor : ProgramDescriptorType;

{variables for RPMControl }

Wrtlen, Readlen : INTEGER;
WriteDataBuffer : RpmDataBufferType;
ReadDataBuffer : RpmDataBufferType;

CONST
RPMOPT WD = 23000; {Group 1: Set Working Directory
RPMOPT RP = 23010; {Group 2: Restore Program
RPMOPT AS = 23020; {Group 3: Assign Partition
RPMOPT PR = 23030; { Set Program Priority

RPMOPT WS = 23040; { Change Working Set Size
RPMOPT VS = 23050; { Change VMA Space Size
RPMOPT CD = 23060; { Change CDS Code Size
RPMOPT DT = 23070; { Change CDS Data Size
RPMOPT RPMSTRING = 20000; { Pass Parameter String

6-44 Remote Process Management

e e e e e e —— ——

RPMOPT TMLIST = 23080; {Group 4: Time List Scheduling (EXEC 12)

RPMOPT IMMNOWAIT = 23090; { Immediate Schedule W/out Wait (EXEC 10)
RPMOPT QUENOWAIT = 23100; { Queue Schedule Without Wait (EXEC 24)
RPMOPT XQ = 23110; { XQ (FmpRunProgram)

{ WD (RPMCreate Option 23000) Declarations
{ WD option sets session’s working directory

CONST
MAX PATH LENGTH = 63;

TYPE

WdOptType = RECORD

CASE BYTE OF

0 : (Bytes : RpmOptDataType) ;

1 : (WdPath : PACKED ARRAY [1..MAX PATH LENGTH] OF CHAR) ;
END; { WdOptType }

VAR
WdOpt : WdOptType;

{ RP (RPMCreate Option 23010) Declarations
{ RP option restores permanent

CONST
MAX ID LENGTH = 6;
TYPE

IDNameType = PACKED ARRAY [1..MAX ID LENGTH] OF CHAR;

RpOptType = RECORD
CASE BYTE OF
0 : (Bytes : RpmOptDataType) ;
1 : (RpIDName : IDNameType;
RpClone : CHAR;) ;
END; { RpOptType }

VAR
RpOpt : RpOptType;

{ As (RPMCreate Option 23020) Declarations
{ AS option assigns program partition

TYPE
AsOptType = RECORD
CASE BYTE OF
0 : (Bytes : RpmOptDataType) ;
1 : (AsPartition : Intle;

Remote Process Management

6-45

e

AsCodeOrData : CHAR;) ;
END; { AsOptType }

{ PR (RPMCreate Option 23030) Declarations
{ PR option sets program priority

{ ___
TYPE
PrOptType = RECORD
CASE BYTE OF
0 : (Bytes : RpmOptDataType) ;
1 : (PrPriority : Intl16); { range is 1..32767 }
END; { PrOptType }
VAR

{ WS (RPMCreate Option 23040) Declarations
{ WS Option sets working set size

TYPE
WsOptType = RECORD
CASE BYTE OF
0 : (Bytes : RpmOptDataType) ;
1 : (WsSize : Intl6); { range is 2..1022 }
END; { WsOptType }

VAR
WsOpt : WsOptType;

{ Vs (RPMCreate Option 23050) Declarations
{ VS Option sets VMA size

TYPE
VsOptType = RECORD
CASE BYTE OF
0 : (Bytes : RpmOptDataType) ;
1 : (VsSize : Intlé6); { Range for RPM is 32..32767 }
END; { VsOptType }

{ D (RPMCreate Option 23060) Declarations
{ CD Option sets max number of code segments allocated in memory

6-46 Remote Process Management

TYPE
CdOptType = RECORD
CASE BYTE OF
0 : (Bytes : RpmOptDataType) ;
1 : (CdMaxCodeSegs : Intle);
END; { CdOptType }

VAR
CdOpt : CdOptType;

{ DT (RPMCreate Option 23070) Declarations
{ DT Option sets max number of data segments allocated in memory

TYPE
DtOptType = RECORD
CASE BYTE OF
0 : (Bytes : RpmOptDataType) ;
1 : (DtMaxDataSegs : Intle);
END; { WsOptType }

VAR
DtOpt : DtOptType;

{ RPMString (RPMCreate Option 20000) Declarations
{ RPMString allows parent to pass string to child

TYPE
RPMStringOptType = RECORD
CASE BYTE OF
0 : (Bytes : RpmOptDataType) ;
1 : (RPMString : RpmStringType) ;
END; { RPMStringOptType }

VAR
RPMStringOpt : RPMStringOptType;

{ TIMELIST SCHEDULING (RPMCreate Option 23080) Declarations
{ TIMELIST option allows time scheduling (EXEC 12)

TYPE
TimeListOptType = RECORD
CASE BYTE OF
0 : (Bytes : RpmOptDataType) ;
1 : (TmListUnits : Intle;
TmListOften : Intlé6;
TmListDelay : Intleé); { Range is -32768..-1 }
2 : (TmListAbsUnits : Intlé6;
TmListAbsOften : Intlé6;
TmListAbsHour : Intlé6;

Remote Process Management 6-47

TmListAbsMin : Intle;

TmListAbsSec : Intle;

TmListAbsMsec : Intlé6);
END; { TimeListOptType }

VAR
TimeListOpt : TimeListOptType;

CONST
{Constants for TmListUnits }
CENTISECONDS = 1;
SECONDS = 2;
MINUTES = 3;
HOURS = 4;

{ IMMEDIATE SCHEDULING NOWAIT (RPMCreate Option 23090) Declarations
{ IMMEDIATE SCHEDULING option allows immediate scheduling nowait (EXEC 10)

TYPE
ImmNoWaitOptType = RECORD
CASE BYTE OF
0 : (Bytes : RpmOptDataType) ;
1 : (ImmNoWaitParml : Intlé6;
ImmNoWaitParm2 : Intlé6;
ImmNoWaitParm3 : Intlé6;
ImmNoWaitParm4 : Intlé6;
ImmNoWaitParm5 : Intlé6;
ImmNoWaitBufr : PACKED ARRAY [1..MAX_BUFR_LENGTH] OF CHAR;
ImmNoWaitBuflLength : Intlé); { Use negative value for bytes }
END; { ImmNoWaitOptType }

VAR
ImmNoWaitOpt : ImmNoWaitOptType;

{ QUEUE SCHEDULING NOWAIT (RPMCreate Option 23100) Declarations
{ QUEUE SCHEDULING option allows queue scheduling nowait (EXEC 24)

CONST
QUE _NOWAIT OPT DATA LENGTH = MAX BUFR LENGTH + 12;
TYPE
QueNoWaitOptType = RECORD
CASE BYTE OF
0 : (Bytes : RpmOptDataType) ;
1 : (QueNoWaitParml : Intlée;
QueNoWaitParm2 : Intlé6;
QueNoWaitParm3 : Intlé6;
QueNoWaitParm4 : Intlé6;
QueNoWaitParm5 : Intlé6;
QueNoWaitBufr : PACKED ARRAY [1..MAX BUFR LENGTH] OF CHAR;
QueNoWaitBufLength : Intlé) ; { Use negative value for bytes }
END; { QueNoWaitOptType }

6-48 Remote Process Management

VAR

QueNoWaitOpt QueNoWaitOptType;

{ XQ (RPMCreate Option 23110) Declarations
{ XQ option is the equivalent to FmpRunProgram

CONST
MAX RUNSTR LENGTH = 256;
TYPE
XQOptType = RECORD
CASE BYTE OF
0 : (Bytes RpmOptDataType) ;
1 : (XQRunstr PACKED ARRAY [1..MAX RUNSTR LENGTH] OF CHAR;
XQAlter Intl6) ;
END; { XQOptType }
VAR
XQOpt : XQOptType;

CONST
RPMOPT SUSPEND = 20001;
RPMOPT RESUME = 20002;
RPMOPT BR = 23120;
{ RPMOPT PR = 23030; (Already declared as RPMCREATE option code) }
RPMOPT IDINFO 23130;

PROCEDURE RPMCONTROL

(VAR
VAR

VAR

VAR
VAR
VAR
VAR

pd

nodename
nodenamelen
regcode
wrtdata
wlen
readdata
rlen

flags
result

PROCEDURE RPMCREATE

(VAR

VAR

VAR

progname
namelen
nodename
nodenamelen
login

ProgramDescriptorType;
NodeNameType;

INTEGER;

INTEGER;
RpmDataBufferType;
INTEGER;
RpmDataBufferType;
INTEGER;

FlagsType;

INTEGER) ; EXTERNAL;

ProgramNameType;
INTEGER;
NodeNameType;
INTEGER;
StringType;

Remote Process Management

6-49

loginlen : INTEGER;

VAR password : StringType;
passwdlen : INTEGER;
VAR flags : FlagsType;
VAR opt : RpmOptType;
VAR pd : ProgramDescriptorType;
VAR result : INTEGER) ; EXTERNAL;

PROCEDURE RPMGETSTRING

(VAR rpmstring : RpmStringType;
VAR rpmstrlen : INTEGER;
VAR result : INTEGER) ; EXTERNAL;

PROCEDURE RPMKILL

(VAR pd : ProgramDescriptorType;
VAR nodename : NodeNameType;
nodenamelen : INTEGER;
VAR result : INTEGER) ; EXTERNAL;

PROCEDURE INITOPT

(VAR opt : RpmOptType;
optnumarguments : Intlé;
VAR error : Intle); EXTERNAL;

PROCEDURE ADDOPT

(VAR opt : RpmOptType;

argnum : Intle;

optioncode : Intle;

datalength : Intle;
VAR data : RpmOptDataType;
VAR error : Intle) ; EXTERNAL;

FUNCTION GetRunString SALIAS 'Pas.Parameters’$

(pos : Intlé;
VAR envstr : EnvStringType;
len : Intleé

): intlé; External;

PROCEDURE RPM ERROR
(VAR CallName : CallNameType;
VAR ResultCode : INTEGER) ;

BEGIN
writeln(screen, 'rpml: an error occurred in your ’',CallName,’ call.’);
writeln(screen, 'rpml: the error code returned was: ’',ResultCode) ;
GOTO 999;

END; { RPM_ERROR }

6-50 Remote Process Management

PROCEDURE OPT_ ERROR
(VAR CallName : CallNameType;
VAR ErrorCode : Intleé);

BEGIN
writeln(screen, 'rpml: an error occurred in your ’',CallName,’ call.’);
writeln(screen, 'rpml: the error code returned was: ’',ErrorCode) ;
GOTO 999;

END; { OPT ERROR }

{ ReportUsage

Procedure ReportUsage;
BEGIN {* report usage *}

writeln(screen, 'Usage: rpml <nodeName> <loggin> [passwd] [directory]’);
END; {* report usage *}

{ ___
{ Main
{ calls ADDOPT to set the child’s session working directory, RP the child,
{ send 2 RPM data strings to the child and time schedule the child.
{ calls RPMCREATE to create the child, and RPMCONTROL to get child’s status.
{ ___
BEGIN {* main *}
{}
{ Get the runstring.
{}
rewrite (screen,’'1l’);
rlen := GetRunString(l,rstring,MAX RUN STRING) ;
IF (rlen <= 0) THEN
BEGIN {* no node name *}
ReportUsage;
GOTO 999;
END; {* no node name *}
strmove (rlen, rstring, 1,NodeName, 1) ;
NodeNameLength := rlen;

rlen := GetRunString(2,rstring,MAX RUN STRING) ;
IF (rlen <= 0) THEN
BEGIN {* no loggin *}
ReportUsage;
GOTO 999;
END; {* no loggin *}
strmove (rlen,rstring,1l,Login, 1) ;
LoginLength := rlen;

{1

{ Allow if user does not have password - optional parameter.

{}

rlen := GetRunString(3,rstring,MAX RUN STRING) ;
IF (rlen > 0) THEN

Remote Process Management 6-51

BEGIN {* password specified *}
strmove (rlen,rstring, 1, Password, 1) ;
END; {* password specified *}
IF (rlen < 0) THEN

PasswdLength := 0
ELSE
PasswdLength := rlen;

{1

{ Get working directory if any - optional parameter.
{}
rlen := GetRunString(4,rstring,MAX RUN STRING) ;
IF (rlen > 0) THEN

BEGIN {* directory specified. *}

strmove (rlen,rstring,1l,WdOpt.WdPath, 1) ;

END; {* directory specified. *}

IF (rlen < 0) THEN
rlen := 0;

Flags.int := 0; { Flags not used, so clear array }
OptNum := 0O;

{ 1Initialize RpmOpt array . }
IF (rlen > 0) THEN
BEGIN {* need to add working directory also *}
INITOPT(RpmOpt,5,error);
IF error <> NO ERROR THEN

BEGIN

CallName := ’'INITOPT’;

OPT ERROR(CallName,error) ;
END;

{1

{ set child’'s session working directory
{}
ADDOPT (RpmOpt, OptNum, RPMOPT WD, rlen,WdOpt.Bytes,error);
OptNum := OptNum +1;
IF error <> NO ERROR THEN
BEGIN
CallName := 'ADDOPT--WD Opt’;
OPT ERROR (CallName, error) ;
END;
END {* need to add work directory also *}
ELSE
BEGIN {* only 4 options to add *}
INITOPT (RpmOpt,4,error);
IF error <> NO ERROR THEN

BEGIN

CallName := ’'INITOPT’;

OPT ERROR(CallName,error) ;
END;

END; {* only 4 options to add *}

——

RP child with the ID ’'CH1’

et Ya R

6-52 Remote Process Management

RPOpt .RpIDName := ’‘CH1 ';
ADDOPT (RpmOpt, OptNum, RPMOPT RP, 6,RpOpt.Bytes,error);

OptNum := OptNum +1;
IF error <> NO_ERROR THEN
BEGIN
CallName := 'ADDOPT--RP Opt’;
OPT ERROR (CallName, error) ;
END;

{1

{ send two data strings
{}
RpmStringOpt.RpmString:= ’'String 1’;
ADDOPT (RpmOpt , OptNum, RPMOPT RPMSTRING, 8,RpmStringOpt.Bytes, error) ;
OptNum := OptNum +1;
IF error <> NO_ERROR THEN
BEGIN
CallName := 'ADDOPT--RPM String Opt’;
OPT ERROR (CallName, error) ;
END;

RpmStringOpt .RpmString:= 'String 2';
ADDOPT (RpmOpt , OptNum, RPMOPT RPMSTRING, 8,RpmStringOpt.Bytes, error) ;
OptNum := OptNum +1;
IF error <> NO_ERROR THEN
BEGIN
CallName := 'ADDOPT--RPM String Opt’;
OPT ERROR (CallName, error) ;
END;

{1

{ Time schedule the child to run after 5 seconds.

{}

WITH TimeListOpt DO

BEGIN
TmListUnits := 2; {* indicate unit in second *}
TmListOften := 0; {* execute once *}
TmListDelay := -5; {* delay 5 seconds before executing *}
END; { WITH TimeListOpt }

ADDOPT (RpmOpt, OptNum,RPMOPT TMLIST, 6,TimeListOpt.Bytes,error) ;

OptNum := OptNum +1;
IF error <> NO ERROR THEN
BEGIN
CallName := 'ADDOPT--Time List Opt’;
OPT ERROR (CallName, error) ;
END;

write (screen, 'rpml: RPMCreate the child program...’);
{ set program name, node name, login and password for RPMCREATE }
ProgramName := 'RPM2’;
ProgNameLength := 4;
RPMCREATE (ProgramName, ProgNameLength, NodeName, NodeNameLength, Login,
LoginLength, Password, PasswdLength, Flags,
RpmOpt, ProgramDescriptor, result) ;

Remote Process Management

6-53

IF result <> NO_ERROR THEN

BEGIN
CallName := ’'RPMCreate’;
RPM_ERROR(CallName,result);
END;

writeln (screen,’ [ok].");
{ Use RPMControl to check status }

Readlen := 2; { expect 2 bytes of data back for child status }

RPMCONTROL (ProgramDescriptor, NodeName, NodeNameLength, RPMOPT IDINFO,
WriteDataBuffer,Wrtlen,ReadDataBuffer,Readlen, Flags, result) ;

IF (result <> NO_ERROR) THEN
BEGIN ({* error *}
CallName := ’'RPMControl’;
RPM_ERROR (CallName, result);
END {* error *}
ELSE
BEGIN {* ok from child *}
writeln (screen,’'rpml: status of the child program is: ',
ReadDataBuffer.data words [1]:3);
END; {* ok from child =}

999 :;

END. {* main *}

6-54 Remote Process Management

Pascal/1000 RPM Child Program

STANDARD LEVEL 'HP1000’ $
CDS ON $
CODE_CONSTANTS OFF $

This RPM child program calls RPMGETSTRING to retrieve strings passed from
its parent.
It must be a CDS program.

program rpm2 (input,output) ;

LABEL 999;

TYPE

{General-purpose types }
Byte = 0..255;
Intle = -32768..32767;

StringType = PACKED ARRAY [1..256] OF CHAR;
CallNameType = STRING([25];

CONST
MAX RPMSTRING LENGTH = 256; {can be increased to meet application}
{needs. See upper bound note in }
{parent program. }

NO ERROR = 0;
TYPE

RpmStringType = PACKED ARRAY [1..MAX RPMSTRING LENGTH] OF CHAR;
VAR

result : INTEGER; {used for error return }
CallName : CallNameType;

PROCEDURE RPMGETSTRING
(VAR rpmstring : RpmStringType;
VAR rpmstrlen : INTEGER;
VAR result : INTEGER) ; EXTERNAL;

Remote Process Management 6-55

PROCEDURE RPM ERROR
(VAR CallName : CallNameType;
VAR ResultCode : INTEGER) ;

BEGIN
writeln('An error occurred in your ’',CallName,’ call.’);
writeln(’'The error code returned was: ' ,ResultCode);
GOTO 999;

END; { RPM_ERROR }

{ GET AND PRINT STRING procedure--calls RPMGETSTRING to retrieve RPM string
{ from parent, check for RPM error and print string.

PROCEDURE GET AND PRINT STRING;
VAR
RpmString : RpmStringType;
RpmStrLen : INTEGER;
index : Intleé;
BEGIN {GET AND PRINT STRING}

RPMGETSTRING (RpmString,RpmStrLen, result) ;
IF result <> NO_ERROR THEN

BEGIN
CallName := 'RPMGetString’;
RPM_ERROR(CallName,result);
END
ELSE { no error, so print RPM string }
BEGIN
writeln (’RPM String:’); { will be written to system }
FOR index := 1 TO RpmStrLen DO { console since child runs under }
write (RpmString [index]) ; { programmatic session }
writeln
END;
END; {GET_AND PRINT STRING}
{ __
{ Main

BEGIN {Main}

GET_AND PRINT STRING;
GET_AND PRINT STRING;

999 : writeln;

END.

6-56 Remote Process Management

FORTRAN 77 RPM Parent Program

FITN77,L,S
Scds on
sfiles(1,1)

PROGRAM parent (4,99),91790-18270 REV.5240 <880901.1017>

NAME: PARENT
SOURCE: 91790-18270
RELOC: NONE

PGMR: KB, VH

This program is the peer process to child. It uses RPM calls to
schedule the child program at the same or a remote node. The parent
program calls RPMCREATE with three options:

1. set the child’s working directory

2. RP the child

3. send RPM data strings to the child (2 strings are sent)
The program also calls RPMCONTROL to report the status of the child,
and RPMKILL to terminate the child.

khkkkhkkkhkkhkkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkkhkhkkhkhkkhkk,kkkkkkk,*k*x

IMPORTANT!

* *
* *
* Since this program uses RPM calls, *
* it will be necessary to increase the *
* gstack size upon loading. A stack *
* gize of 6000 words is sufficient for *
* this program to execute. See the *
* Link User’s Manual for more info. *
* *
* *

about changing stack size.
khkhkhkkhdkhkkhkhkhkhkhdhdhddhhkhkhkhdhdhddkhkhkhkhkdrddkd,dkhkhhxx

oNoNONONONO NN NI N NI NI NOINOINOINOININOINOINOINOINONOINONONO NS

IMPLICIT None

c
c VARIABLE DECLARATIONS:
c The variable declarations for each RPM call are separated for clarity.
C However, declarations for variables which have been declared for
C previous calls are commented out. The purpose of this is to
C demonstrate the complete set of declarations needed for each RPM call.
c
C Two exclamation points (!!) next to a variable name indicated that
C its value may be changed by the call.
c
C INITOPT:
INTEGER*2 options(498) !! INITOPT initializes the options parameter
INTEGER*2 optnumargs ! so that ’'optnumargs’ arguments can be added.
INTEGER*2 error 1l This is the same call used with NetIPC,
! however, if your program uses RPM and NetIPC
! calls, you should initialize SEPARATE options
! variables.
c

Remote Process Management 6-57

C
C

C
C
C

NN NOAN

[oNONONONOINONINONOINONONS!

(@}

6-58

ADDOPT :
INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2

RPMCREATE :
INTEGER*2
INTEGER*4
INTEGER*2
INTEGER*4
INTEGER*2
INTEGER*4
INTEGER*2
INTEGER*4
INTEGER*4
INTEGER*2
INTEGER*4
INTEGER*4

RPMCONTROL:
INTEGER*4
INTEGER*2
INTEGER*2
INTEGER*4
INTEGER*2
INTEGER*4
INTEGER*2
INTEGER*4
INTEGER*4
INTEGER*4

RPMKILL:
INTEGER*4
INTEGER*2
INTEGER*4
INTEGER*4

options (498)
argnum
optioncode
dlengthl
dlength2
dlength3
dlength4
datal (31
data2
data3
data4
error

—_ — — —

(10
(25
(25

progname (32)
namelen
nodename (25)
nodelen
login (8)
loginlen
passwd (8)
passwdlen
flags
options (498)
pd(4)
resultcode

pd (4)
nodename (25)
namelen
regcode
wrtdata (491)
wrtlen
readdata (491)
readlen
flags
resultcode

pd(4)
nodename (25)
nodelen
resultcode

ADDOPT will be used to add the four options
used by RPMCREATE. We have set the length of

"options’ to 996 bytes: maximum size for an
RPM message is 1024 and the header is 28
bytes. Thus 1024 - 28 = 996.

We declare a separate ’‘data’ and ’‘dlength’

variable for each ADDOPT we plan to use

since ’‘data’ values are character strings
of varying lengths. ’‘Data’ must be typed
INTEGER, and we must use DATA statements

to assign character strings to INTEGERSs.

RPMCREATE schedules a program at the node
specified by nodename. If the node is not
the local node, but loginlen is zero, an
error will be returned by RPMCREATE. If
there is no password for a login, then
passwdlen must be zero or RPMCREATE will
return an error. RPMCREATE will process the
options specified in ’‘options’ then schedule
the child program to run as a dependent
(default) program.

RPMCONTROL will be used to request status
information about the child program. The
read and write data buffers have been set
982 bytes because the maximum message size
is 1024 bytes, the RPM header is 30 bytes,
and the opt array header is 12 bytes long.
Thus 1024 - (30 + 12) = 982. However, we
will only use RPMCONTROL to request status
of child, thus, we don’t need ’‘wrtdata’ and
we only need 16 bits of ’readdata’.

RPMCONTROL status codes are the same as
RTE-A’s IDINFO. Refer to RTE-A User/Pgmr
Reference Manual for list of codes.

RPMKILL terminates the execution of the child
program referenced by ’‘pd’ at the node
specified by nodename.

FOR RHPAR to get the runstring

INTEGER*2
INTEGER*2

Remote Process Management

RHPAR
len

c FOR ERROR ROUTINES:
CHARACTER*40 this call
INTEGER*2 loopcount, tmp

DATA progname/’child’/

DATA namelen/5/

DATA data2/’CHILD '/

DATA dlength2/6/

DATA data3/’'This is the first string passed to child.’/
DATA dlength3/41/

DATA data4/’'This is the second string passed to child.’/
DATA dlength4/42/

C Get name of node on which to schedule remote process:
nodelen = RHPAR (1,nodename, 50)
IF (nodelen .EQ. 0) THEN
CALL ReportUsage
ENDIF

C Get login:
loginlen = RHPAR(2,login,16)
IF (loginlen .EQ. 0) THEN
CALL ReportUsage
ENDIF

C Get Password: - optional parameter
passwdlen = RHPAR(3,passwd,16)

C Get directory - optional parameter
dlengthl = RHPAR (4,datal,62)

C Call INITOPT to initialize the ’'options’ parameter:
IF (dlengthl .EQ. 0) THEN
optnumargs = 3

ELSE
optnumargs = 4
ENDIF
error = 0 | Reset error return code
this call = 'INITOPT’

CALL INITOPT (options, optnumargs, error)
IF (error .NE. 0) CALL OPT ERROR (error,this call)

C Call ADDOPT to set the working directory (option 23000) :
argnum = -1 ! First ’'options’ argument
IF (dlengthl .NE. 0) THEN
argnum = argnum + 1

optioncode = 23000 ! Set working directory
error = 0
this call = 'ADDOPT: working directory’

CALL ADDOPT (options, argnum, optioncode,dlengthl,datal, error)
IF (error .NE. 0) CALL OPT ERROR(error,this call)
ENDIF

Remote Process Management 6-59

C Call ADDOPT to RP the child program (option 23010):

argnum = argnum + 1 ! Second ’'options’ argument
optioncode = 23010 ! RP program

error = 0

this call = 'ADDOPT: RPed child program’

CALL ADDOPT (options,argnum, optioncode,dlength2,data2, error)
IF (error .NE. 0) CALL OPT ERROR (error,this call)

C Call ADDOPT to add a string to pass to the child program:

argnum = argnum + 1 ! Third ’'options’ argument
optioncode = 20000 ! Pass string

error = 0

this call = 'ADDOPT: add stringl’

CALL ADDOPT (options, argnum, optioncode,dlength3,data3, error)
IF (error .NE. 0) CALL OPT ERROR (error,this call)

C Call ADDOPT to pass another string to the child program (opt. 20000) :

argnum = argnum + 1 ! Fourth ’'options’ argument
optioncode = 20000 ! Pass string

error = 0

this call = 'ADDOPT: add string2’

CALL ADDOPT (options,argnum, optioncode,dlength4,data4,error)
IF (error .NE. 0) CALL OPT ERROR (error,this call)

Now we have the options variable prepared with the four options which
we wish to use. Note that we did not use an option from Group 4
(scheduling options). The default will be that the program is scheduled
immediately by the parent program.

NN NA

Call RPMCREATE to schedule the child at the remote node. Note that
here we will not set any flags. This means that the following defaults
are used:
flags[1]=0 the parent program does not wait for the child.
flags[30]=0 the child will not share its session with another
RPM program.
flags[31]=0 the child will be an INDEPENDENT child.
See the NS/1000 User/Programmer Reference Manual, section 9, for
further information.

[PHONONONONONINO NS

flags = 0

this call = 'RPMCREATE '’

CALL RPMCREATE (progname,namelen,nodename,nodelen,login, loginlen,
> passwd, passwdlen, flags,options, pd, resultcode)

IF (resultcode .NE. 0) CALL RESULT ERROR (resultcode,this call)
WRITE (1,’ (*Child program scheduled at node ”,48A2)’') nodename

C Call RPMCONTROL to get the child program’s status. A request code of
C 23130 requests the program’s status. The status is returned as a 16 bit
C 1integer to readdata:

reqcode = 23130 ! Code for ’'Request child status info’.
wrtlen = 0 ! Must be set to zero for this request.
readlen = 2 I Must be set to two for status request.

6-60 Remote Process Management

flags = 0 ! Not used, but must be cleared.
resultcode = 0 ! Reset the result code to zero.

this call = ’'RPMCONTROL ’

CALL RPMCONTROL (pd, nodename,nodelen, reqcode,wrtdata,wrtlen,

> readdata, readlen, flags, resultcode)

IF (resultcode .NE. 0) CALL RESULT ERROR (resultcode,this call)
WRITE (1, (“*Status of the child program is: ”,I8)’) readdata(l)

C Call RPMKILL to terminate the child program:

C allow the child to execute before killing - wait for 4 seconds.
WRITE (1,’ (“Waiting for child to finish executing (4 secs)...”)’)
CALL EXEC (12,0,2,0,-4)
CALL RPMKILL (pd,nodename,nodelen, resultcode)
IF (resultcode .NE. 0) CALL RESULT ERROR(resultcode,this call)

WRITE (1, (“*Child killed. Parent completed successfully.”)’)
END ! of main program

CCCCCCCCCcrrreeeceeeeeeeceeeecceceeceeecececececeececececeecececececcececececececcececececececcececcececcccecc

c c
C SUBROUTINE OPT ERROR: called when ADDOPT or INITOPT returns with an c
c error code .NE. 0 c
c c

CCCCCCCCCCCCCCCCCCcrrrrreececeeeeeeececeeceeeeecececececeeeeece
SUBROUTINE OPT ERROR (code, which_call)
INTEGER*2 code ! error code returned from call

CHARACTER*40 which call ! call which produced error

WRITE(1,’ (“ERROR RETURNED FROM ”,All)’) which call
WRITE(1,’ (“THE ERROR CODE WAS ”,I4)’) code

STOP
END ! of OPT ERROR

CCCCCCCCCcrrreeeceeceeecceeeeececceecececececceecccececccecececcececccecceececcececececceccececcccecececcccc

c c
C SUBROUTINE RESULT ERROR: called when an RPM call returns with a c

c resultcode .NE. 0 c
c c

CCCCCCCCCCCCCCCCCCrrrrreeceeeeeeecececececeeeececececececeeeecececccececeececececececececececececececececece
SUBROUTINE RESULT ERROR (code, which_call)
INTEGER*4 code ! error code returned from call

CHARACTER*11 which call ! call which produced error

WRITE(1,’ (“ERROR RETURNED FROM ”,All)’) which call
WRITE(1,’ (“THE ERROR CODE WAS ”,I8)’) code

STOP
END ! of RESULT ERROR

Remote Process Management 6-61

CCCCCCCCCcrrreeeceeeceeecceeeeececceeceecececceececececccecececcececececeececcececececceccececcccecececcccc

c c
C SUBROUTINE ReportUsage: called to report usage. C
c c

CCCCCCCCCCCCCCCCCCrerereeeeeeeceeeeeceeeeeceeecececececeeececcecceccececececcececcece
SUBROUTINE ReportUsage

write(1l,’ (“Usage: parent <node> <login> [passwd] [directory]l”)’)

STOP END
CCCCCCCCCcrrreeeceeceeecceeeeececceecececececceecccececccecececcececccecceececcececececceccececcccecececcccc

6-62 Remote Process Management

FORTRAN 77 RPM Child Program

FITN77,L,S
Scds on
Sfiles(1,1)

PROGRAM child(4,99),91790-18269 REV.5010 <880901.1018>

NAME: CHILD
SOURCE: 91790-18269
RELOC: NONE

PGMR: KB

This program is the peer process to parent. It makes two calls to
RPMGETSTRING to receive the two strings sent by its parent. The
child program then enters an endless loop, waiting to be killed by
the parent. The endless loop is present simply to illustrate that
the parent’s RPMKILL call actually terminates the execution of the
child. The WRITE statements in this program send output to the
standard output device (’*’), which is most cases is the system

khkkkhkkkhkkhkkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkkhkhkkhkhkkhkk,kkkkkkk,*k*x

IMPORTANT!

* *
* *
* Since this program uses RPM calls, *
* it will be necessary to increase the *
* gtack size upon loading. A stack *
* gize of 4000 words is sufficient for *
* this program to execute. See the *
* Link User’s Manual for more info. *
* *
* *

about changing stack size.
khkhkhkkhdkhkkhkhkhkhkhdhdhddhhkhkhkhdhdhddkhkhkhkhkdrddkd,dkhkhhxx

oNoNONONONO NN NI N NI NI NOINOINOINOININOINOINOINOINONOINONONO NS

IMPLICIT None

c

C RPMGETSTRING:
INTEGER*2 rpmstring(40) ! RPMGETSTRING retrieves ONE string
INTEGER*4 rpmstringlen ! passed to it be the parent’s RPMCREATE
INTEGER*4 resultcode ! call.

CHARACTER*12 this call

CCCCCCCCCrrreeeceeeeeeceeeecececceeceecececceecececececceececcecececceececcecececcececcecececcececcecce

C C
c BEGIN MAIN PROGRAM: C
C C

CCCCCCCCCrrreeeceeeeeecceeeececececcececececececceececececececeececcecececceececcecececcececececececcecececececce

resultcode = 0 | Reset the result code.
rpmstringlen = 80 ! Receive 80 bytes.
this_call = 'RPMGETSTRING’

CALL RPMGETSTRING (rpmstring, rpmstringlen, resultcode)
IF (resultcode .NE. 0) CALL RESULT ERROR (resultcode,this call)

Remote Process Management

printer. The WRITE statements may be changed to specify a specific LU.

6-63

WRITE (*,’ ("\RECEIVED STRING #1 FROM PARENT:”) ')

WRITE (*,’ (40A2) ') rpmstring

resultcode = 0 ! Reset the result code.
rpmstringlen = 80 ! Receive 80 bytes.

this call = ’'RPMGETSTRING'’

CALL RPMGETSTRING (rpmstring, rpmstringlen, resultcode)
IF (resultcode .NE. 0) CALL RESULT ERROR (resultcode,this call)

WRITE (*,’ (*“RECEIVED STRING #2 FROM PARENT:”) ')
WRITE (*,’ (40A2) ') rpmstring

99 GO TO 99 ! Endless loop.
END

CCCCCCCCCrrereeeceeeeeeceeeeececcececececececceecececececceececcecececceececcecececcececececececcececececce

C C
c SUBROUTINE RESULT ERROR: c
C C

CCCCCCCCCrrereeeceeeeeeceeeeececcececececececceecececececceececcecececceececcecececcececececececcececececce
SUBROUTINE RESULT ERROR (code, which call)

INTEGER*4 code | error code returned from call
CHARACTER*12 which call ! call which produced error

WRITE (*,’ ("ERROR CODE RETURNED FROM ”,Al2)’) which call
WRITE (*,’ (“THE ERROR CODE WAS ”,I4)’) code
STOP

END ! of RESULT ERROR

6-64 Remote Process Management

NFT-FTP Comparison

The following paragraphs compare FTP and NFT.

System Type

FTP: Can only copy files between HP and
non-HP systems that support ARPA FTP
protocol. Can copy files from the local node
to a remote node and from a remote node to
the local node.

Remote Logons

FTP: Can log on to specific accounts at ARPA
and NS-ARPA nodes. A valid login name and
password is needed to log onto HP 9000
systems.

File Type

FTP: Can copy FMGR files as well as files in
the hierarchical file system. Can only copy
ASCII and binary files. The file type of the
target file defaults to the type of the source
file. This can be overridden by specifying a
different file type in the target file descriptor
for the target file. Unpredictable results will
occur if binary file types are used for ASCII
files and vice versa.

NFT: Can only copy files between NS systems.
These systems may be HP 1000s, HP 3000s,
HP 9000s, or PCs. Can copy files from the
local node to a remote node, from a remote
node to the local node, and from a remote
node to another remote node.

NFT: Can log on to specific accounts at all NS
nodes.

NFT: Can copy FMGR files as well as files in
the hierarchical file system. The file type of
the target file defaults to the type of the
source file. This can be overridden by
specifying a different file type in the file
descriptor for the target file, or by specifying
certain Interchange Format options.

NFT-FTP Comparison A-1

File Specification

FTP: The source and target file specifications
must both be files. File masks can be used in
both file specifications.

File Size

FTP: The size of the target file defaults to the
size of the source file. This can be overridden
by specifying a different file size in the target
file descriptor. For binary files, if the
destination file is larger than the source file,
the destination file is padded with null
characters.

Record Length

FTP: The record size limit for files is
determined by the operating system. The
default ASCII file record size is 256 words,
and the default binary file record size is 128
words.

A-2 NFT-FTP Comparison

NFT: The source and target file specifications
must both be files. File masks can be used in
both file specifications.

NFT: The size of the target file defaults to the
size of the source file. This can be overridden
by specifying a different file size in the file
descriptor for the target file or by specifying
an Interchange Format option.

NFT: If Interchange Format is used, the
source file must not have records longer than
2200 words. If Transparent Format is used,
there is no record size limit.

Porting NetlPC Programs

Overview

Network Interprocess Communication (NetIPC) is a service that enables processes on the same or
different nodes to communicate using a series of programmatic calls. NetIPC is provided as part
of the NS-ARPA/1000 product for the HP 1000 A-Series and the LAN/9000 product for the

HP 9000.

The purpose of this appendix is to summarize differences and to provide information to help you
successfully port NetIPC programs between NS-ARPA/1000 and LAN/9000 systems.

This appendix does not compare the programming language implementations at the different
systems. For this information, you should refer to the appropriate language reference manuals.

When you are porting NetIPC programs, the following strategy may help:

1. Make sure that the NetIPC programs are executing correctly between homogeneous systems.
That is, the programs should work between HP 1000 systems first.

2. Port the programs using the language reference manuals. Check carefully for compiler
differences such as data types and lengths.

3. Then check the differences between NetIPC calls documented in this appendix. Check all the
parameters; some are not implemented or have different values.

4. If your ported programs still do not work, consider both programming language and NetIPC
differences.

Porting NetIPC Programs B -1

NS-ARPA/1000 and LAN/9000

This section describes the differences between the NS-ARPA/1000 and LAN/9000 NetIPC
implementations.

Path Report and Destination Descriptors

In NS-ARPA/1000 NetIPC, the descriptor returned by the socket registry software is called a path
report descriptor; in LAN/9000, this descriptor is called a destination descriptor. Although path
report descriptors and destination descriptors have slightly different meanings, their function is
the same: both contain addressing information that is used by a NetIPC process to direct requests
to a certain call socket at a certain node.

Socket Ownership

A LAN/9000 NetIPC process may own a maximum of 60 descriptors. This limit includes call
socket, VC socket, and destination descriptors as well as HP-UX file descriptors and NetIPC
and/or file descriptors inherited or otherwise opened by the process.

A NS-ARPA/1000 NetIPC process may own a maximum of 32 socket descriptors. This limit
includes call socket, VC socket, and path report descriptors.

A LAN/9000 NetIPC process creates a call socket by calling IPCCreate; it creates a VC socket
by calling IPCConnect or IPCRecvCn.

A NS-ARPA/1000 NetIPC process creates a call socket by calling IPCCreate or IPCGet; it
creates a VC socket by calling IPCConnect or IPCRecvCn. An NS-ARPA/1000 NetIPC process
may also gain access to a socket by calling IPCGive. Sockets are given away with the IPCGive
call.

The IPCGive and IPCGet calls are not part of the LAN/9000 NetIPC implementation. Instead,
LAN/9000 processes can also acquire access to sockets owned by other NetIPC processes by
utilizing socket “sharing.” On HP 9000 systems, NetIPC socket descriptors (call socket, VC
socket, and destination), like HP-UX file descriptors, are copied to the “child” process when a
process forks. As a result, more than one process can own a descriptor for the same socket.
Programmers are responsible for regulating the use of shared sockets on LAN/9000 systems.

Socket Shut Down

The IPCShutDown call is used in both NS-ARPA/1000 and LAN/9000 NetIPC to release a
descriptor and any resources associated with it. The shut down procedure for both NS-ARPA/1000
and LAN/9000 processes is identical with the following exception: the operation of the LAN/9000
implementation of IPCShutDown is affected by socket sharing.

When a LAN/9000 NetIPC process “shuts down” a VC socket descriptor that is shared by other
processes, the descriptors owned by the other processes are not affected. The IPCShutDown call
does not operate on the VC socket referred to by a VC socket descriptor unless the descriptor is

B-2 Porting NetIPC Programs

the last descriptor for that socket. A VC socket is destroyed along with its VC socket descriptor
only when the descriptor being released is the last descriptor for that socket.

When shutting down a shared call socket descriptor, the call socket referred to by the descriptor is
destroyed along with the descriptor and names associated with the descriptor only if the descriptor
being released is the last descriptor for that socket. If another process, or processes, have descriptors
for the same socket, these duplicate descriptors, and any names associated with the descriptors,
are not affected.

When shutting down a shared destination descriptor, the addressing information stored in
conjunction with the descriptor is destroyed along with the descriptor only if the descriptor being
released is the sole descriptor for that information. If another process, or processes, have descriptors
for the same information, these duplicate descriptors, and any names associated with the
descriptors, are not affected.

Signals

Unlike NS-ARPA/1000 NetIPC calls, LAN/9000 NetIPC calls that would normally block may be
interrupted by HP-UX signals. NetIPC calls that are interrupted by signals are optionally
restartable. When a call is restarted after a signal, any timeouts (including the synchronous
timeout) will be reset. As a result, signals that continuously interrupt/restart a NetIPC call at an
interval shorter than the socket timeout will effectively void the timeout. Signals are explained in
detail in the HP-UX Reference Manual.

TCP Checksum

The NS-ARPA/1000 IPCConnect and IPCRecvCn calls include a “checksumming” bit in their
flags parameters. When set, this bit causes TCP to enable checksumming.

Unlike NS-ARPA/1000 NetIPC, the LAN/9000 IPCConnect and IPCRecvCn calls do not
include “checksumming” bits. When a LAN/9000 NetIPC process calls IPCConnect or
IPCRecvCn, TCP checksumming is automatically enabled.

TCP checksumming will always be performed if one or both NetIPC processes are LAN/9000
processes. If both processes are NS-ARPA/1000 NetIPC processes, TCP checksumming will be
performed only if one or both processes call IPCConnect or IPCRecvCn with the
“checksumming” bit set.

Remote Process Scheduling

NetIPC itself does not include a call to schedule a remote process. The method used to schedule a
remote NetIPC process depends on the types of systems involved. For example, an
NS-ARPA/1000 NetIPC process written to schedule an NS-ARPA/1000 peer process must be
modified to utilize another scheduling method when it is ported to an LAN/9000 system.

Porting NetIPC Programs B-3

Remote NS-ARPA/1000 Process

In order to schedule a remote NS-ARPA/1000 NetIPC process from an NS-ARPA/1000 node, you
can use one of the following methods: the Remote Process Management (RPM) call RPMCreate,
the Program-to-Program communication (PTOP) POPEN call, one of the DEXEC scheduling calls,
the REMAT QU command, or the TELNET virtual terminal service.

You cannot use any of these services to schedule a remote NS-ARPA/1000 process from a
LAN/9000 node because these services are only NS-ARPA/1000 services. The “Process
Scheduling” section in the”Network Interprocess Communication” chapter earlier in this manual
describes ways to schedule an NS-ARPA/1000 NetIPC process from a LAN/9000 node.

Remote LAN/9000 Process

Remote LAN/9000 processes can be manually started or can be scheduled by user-written
daemons that are started at system start up. The “Process Scheduling” section in the”Network
Interprocess Communication” chapter earlier in this manual describes ways to schedule a
LAN/9000 NetIPC process from an NS-ARPA/1000 node.

Case Sensitivity

Because the HP-UX operating system is case-sensitive, LAN/9000 NetIPC call names must be
typed using lower case characters. For example, the NetIPC call IPCConnect must be typed as
ipcconnect on LAN/9000 systems.

NS-ARPA/1000 NetIPC call names are not case sensitive and may be typed using lower case or
upper case characters, or a combination of both upper and lower case characters.

NetIPC Calls

For the purposes of the following discussion, the NS-ARPA/1000 and LAN/9000 NetIPC calls are
divided into four categories:

e Calls that are unique to NS-ARPA/1000 NetIPC.
e Calls that are unique to LAN/9000 NetIPC.

e (alls that are common to both NS-ARPA/1000 and LAN/9000 NetIPC and are implemented
identically on each system.

e (Calls that are common to both NS-ARPA/1000 and LAN/9000 NetIPC but are implemented
differently on each system.

B-4 Porting NetlIPC Programs

Unique NetIPC Calls

The following calls are provided as part of the NS-ARPA/1000 NetIPC implementation only:

e Adrof. This call obtains the byte address of any byte within a data object.

e 1pCGet. This call allows a process to obtain ownership of a call socket, path report or VC
socket descriptor that was given away by another process with an IPCGive call.

e 1pcGive. This call allows a process to “give up” a call socket, VC socket or path report

descriptor so that another process may obtain it.

The LAN/9000 NetIPC implementation includes one call that is not provided by NS-ARPA/1000

NetIPC:

e OptoverHead. This call is used to determine the number of bytes needed for the opt

parameter.

Common NetlPC Calls

The following NetIPC calls are common to both the NS-ARPA/1000 and LAN/9000 NetIPC and

are implemented identically.

Table B-1. Identical NetlPC Calls

AddOpt IPCLookUp
InitOpt IPCSend
IPCDest ReadOpt

Porting NetlPC Programs

B-5

Call Comparison

Table B-2 lists the differences between the NetIPC calls that are common to both the
NS-ARPA/1000 and LAN/9000 NetIPC implementations but that are implemented differently.

Table B-2. NS-ARPA/1000 and LAN/9000 Call Comparison

NetIPC Call

Differences Between Implementations

IPCConnect

The NS-ARPA/1000 implementation of IPCConnect defines a f1ags parameter
bit that is not defined by the LAN/9000 implementation of the call:
“checksumming” (bit 22). All LAN/9000 IPCConnect flags parameter bits must
be clear (not set). NS-ARPA/1000 NetlPC processes can enable TCP
checksumming by setting the “checksumming” bit. If this bit is not set, TCP
checksum will not be performed for the connection unless the process’s peer
process calls IPCRecvCn with that call’s “checksumming” bit set, or the peer
process is a LAN/9000 NetlPC process. TCP checksumming is always enabled
when the LAN/9000 implementation of IPCConnect is called.

Refer to “TCP Checksum” earlier in this appendix for more information.

The LAN/9000 implementation of IPCConnect allows a value of -1 to be assigned
to the call’s calldesc parameter. This value causes a call socket to be created
and then destroyed after the call completes successfully. The NS-ARPA/1000
implementation of IPCConnect does not allow this value.

The NS-ARPA/1000 and LAN/9000 implementations of IPCConnect implement
different maximum send and receive sizes. The NS-ARPA/1000 maximum send
and receive sizes are 8,000 bytes; the LAN/9000 maximum send and receive sizes
are 32,000 bytes. The default size on both implementations is 100 bytes.

IPCControl

The LAN/9000 implementation of IPCControl includes four request codes that
are not provided by the NS-ARPA/1000 implementation of the call: 4, 1002, 1003
and 9008. When request code 9008 is specified, the LAN/9000 implementation of
IPCControl allows a value of -1 in the call’'s descriptor parameter; this is also
not part of the NS-ARPA/1000 implementation of the call. Refer to the LAN/9000
NetIPC chapter for a description of these request codes.

Unlike the NS-ARPA/1000 implementation of IPCControl, the operation of the
LAN/9000 1pCccontrol call is affected by socket sharing. Refer to “Socket
Ownership” earlier in this appendix for more information about socket sharing.
Refer to the LAN/9000 NetIPC chapter for a complete description of how socket
sharing affects the IPCControl call.

IPCCreate

The NS-ARPA/1000 and LAN/9000 implementations of IPCCreate support different
ranges of permitted TCP protocol addresses that can be specified in the opt
parameter. However, both implementations recommend that users specify TCP
addresses in the range 30767 to 32767 decimal.

The NS-ARPA/1000 and LAN/9000 implementations of TPCCreate also support
different maximum connection request backlog defaults and ranges. The
NS-ARPA/1000 implementation has a default of three connection requests and an
allowable range of zero to five; the LAN/9000 implementation has a connection
request default of one and an allowable range of 1 to 20.

B-6 Porting NetIPC Programs

NetIPC Call

Differences Between Implementations

IPCName

The LAN/9000 implementation of IPCName allows for the naming of destination
(also known as path) descriptors. The NS-ARPA/1000 implementation of the call
does not.

IPCNamErase

Unlike the NS-ARPA/1000 implementation of IPCNamErase, the operation of the
LAN/9000 implementation of ITPCNamErase is affected by socket sharing. Refer to
“Socket Ownership” earlier in this appendix for more information about socket
sharing.

Unlike the LAN/9000 implementation of IPCNamErase, the operation of the
NS-ARPA/1000 implementation of the call does not allow for erasing names
assigned to path report (also known as destination) descriptors.

IPCRecv

The LAN/9000 implementation of IPCRecv defines bit 26 of the call's f1ags
parameter as “more data.” This bit is not implemented on NS-ARPA/1000. When
this bit is set on an LAN/9000, it indicates that non-delimited data was received.

IPCRecv(Cn

The NS-ARPA/1000 implementation of IPCRecv includes a f1ags parameter bit
that is not defined by the LAN/9000 implementation of the call: “checksumming”
(bit 22). All LAN/9000 IPCRecvCn flags parameter bits must be clear (not set).
NS-ARPA/1000 NetlPC processes can enable TCP checksumming by setting the
“checksumming” bit. If this bit is not set, TCP checksum will not be performed for
the connection unless the process’s peer process called IPCConnect with that
call’'s “checksumming” bit set, or the peer process is an LAN/9000 NetIPC
process. TCP checksumming is always enabled when the LAN/9000
implementation of ITPCRecvCn is called.

Refer to “TCP Checksum” earlier in this appendix for more information.

IPCSelect

The LAN/9000 implementation of IPCSelect allows the sdbound parameter to
have a maximum value of 60. The NS-ARPA/1000 implementation has an upper
limit of 32.

IPCShutDown

Unlike the NS-ARPA/1000 of IPCShutDown, the operation of the LAN/9000
implementation of TPCShutDown is affected by socket sharing. Refer to “Socket
Ownership” earlier in this appendix for more information.

Porting NetIPC Programs B-7

Glossary

address

Used to indicate where nodes are located in a network. Addresses are usually numeric. In
NS-ARPA/1000, nodes are assigned different types of addresses. Also see Internetwork
Protocol address, Router/1000 address, and LAN station address.

ANH

See Appropriate Next Hop.

APLDR

The DS/1000-IV Compatible Services absolute program loader. Processes the REMAT LO,
10 and PL commands, and FLOAD utility call. (The LO command and FLOAD call can be
used to load programs into memory-based systems only.)

Application Layer

Layer 7 of the OSI model. Tasks include the user interface to remote services.

Appropriate Next Hop (ANH)

The next node to which IP is to route a message. Also see Internetwork Protocol.

ARP

Translates Internet (IP) addresses to physical addresses. Like Probe, ARP is not directly
accessible to users.

ARPA

Advanced Research Projects Agency. ARPA services supported by NS-ARPA/1000 include
TELNET (virtual terminal service) and FTP (File Transfer Protocol). Also see TELNET
and FTP.

asynchronous mode

A mode of data exchange utilized by NetIPC processes. When NetIPC processes exchange
data in asynchronous mode, send and receive requests do not cause the calling process to be
suspended if a request cannot be immediately satisfied. Instead, a “would block” error is
returned and the calling process is free to perform other tasks before retrying the request.

Berkeley Sockets
See BSD IPC.

Bisync

A type of communication link used by NS-ARPA/1000 to connect NS-ARPA/1000 to
DS/3000 systems. Bisync links support only DS/1000-IV Compatible Services (RTE-MPE),
and have no store-and-forward or rerouting capabilities. They can be hardwired or modem
connections.

Glossary-1

Bisync ID Sequences

Local and remote ID sequences can be assigned to limit access to the HP 1000 if you have
an HP 3000 connected to the HP 1000 via a Bisync dial-up link. When the HP 1000 or an
HP 3000 attempts to establish communication over the link, each machine sends its local ID
sequence, which the other machine compares with its remote ID sequence.

BREVL

The NS-ARPA/1000 program that terminates event logging (EVMON).

broadcast bus network

A network in which nodes are connected by a linear run of cable. Messages are
simultaneously transmitted to every node. Typically, the nodes will process only those
messages addressed to them, and ignore all other messages. IEEE 802.3 networks are
broadcast bus networks. Compare with point-to-point network.

BRTRC

The NS-ARPA/1000 program that terminates tracing (NSTRC).

BSD IPC

Berkeley Software Distribution Interprocess Communication (BSD IPC) provides industry
standard libraries and tools for interprocess communication on HP, UNIX, and other
systems that have BSD IPC.

buffer area
An area of DSAM that is dynamically mapped and contains Message Buffers (MBUFs),
Clusters, and Message Accounts (MACCTs). Also see Messages Buffers, Clusters, and
Message Accounts.

call socket

Used by NetIPC processes to create and connect virtual circuit sockets.

call socket descriptor
A descriptor that refers to a call socket. NetIPC processes obtain call socket descriptors by
invoking the NetIPC calls IPCCreate or IPCGet.

CNSLM

An NS-ARPA/1000 slave monitor that reports MPE TELL and WARN messages. Used by
the DS/1000-IV Compatible Services Transport.

clusters
Part of the DSAM buffer area. A cluster is 1024 bytes of contiguous physical memory. Also
see Message Buffers.

communication link

The software and hardware that moves data from the driver and card of one machine to the
driver of an adjacent machine. NS-ARPA/1000 supports the following communication links:
IEEE 802.3, Ethernet, HDLC, X.25, and Bisync (to NS/3000 or DS/3000 only).

Glossary-2

Connect Site Report (CSR)

Provides information on how to reach a given node within an internetwork and how to reach
a given NetIPC socket within a node. CSRs are stored in the Socket Registry. Also see
Socket Registry.

CONSM

An NS-ARPA/1000 module used by Network File Transfer. CONSM is required at the
Consumer node. Also see Consumer.

Consumer

One of the three logical participants in the Three-Node Model utilized by the
NS-ARPA/1000 User Service Network File Transfer (NFT). The Consumer is located on
the same node as the target file, consumes the source file data and writes it into the target
file. Also see Three-Node Model.

Converters

NS-ARPA/1000 monitors that are used to convert message formats for DS/3000 and
DS/1000 services. If Converters are needed, they are scheduled by NS-ARPA/1000 and wait
for class get completions.

copy descriptor

A parameter used by NFT to describe the source and target file names, nodes names,
logons, and any NFT options that should be used when a file is copied using the DSCOPY
command.

cross-system

A general term to mean that two different types of computer systems are communicating
with one another. For example, cross-system NFT is supported between NS-ARPA/1000
and NS/3000 computer systems as well as between other NS systems. Refer to the NS
Cross-System NFT Reference Manual for information about NFT. Cross-system NetIPC is
also supported between NS-ARPA/1000 and NS/9000 Series 800.

CSR
See Connect Site Report.

datagram service

When a datagram service is utilized, the Network Layer (Layer 3 of the OSI architecture)
delivers each message separately; no attempt is made to keep messages in order.
Therefore, messages may arrive out of order, or not at all. Because there are no “set up,”
data transfer, or shutdown procedures, each datagram is sent independently and must
contain destination information. The HP protocol PXP provides a datagram service. Also
see PXP.

Data Link Layer
Layer 2 of the OSI model. Checks for and corrects transmission errors over the physical
link. Also see Open Systems Interconnection.

data vector

A structure used by NetIPC calls that can describe several data objects. The description of
each object consists of a byte address and a length. The byte address describes where the
object is located and the length indicates how much data the object contains. Any kind of
data object (arrays, portions of arrays, records, simple variables, etc.) can be described by a
data vector.

Glossary-3

DCN
See Directly Connected Network.

DCN information

Information configured for IP that indicates all the Router/1000 and LAN networks to
which the local node belongs. Also see Gateway information, NGT information, and
Directory Connected Network.

Directly Connected Network (DCN)
The local network. Also see network, Router/1000 network, and IEEE 802.3 network.

Distributed Executive (DEXEC)

A DS/1000-1V Compatible Service that allows you to control I/O devices located at remote
HP 1000 nodes. DEXEC calls are the distributed equivalent of local RTE EXEC calls.

Distributed System Available Memory (DSAM)

A memory area specifically reserved for NS-ARPA/1000. Most NS-ARPA/1000 tables are
stored in DSAM. NS-ARPA/1000 messages and messages for DS/1000-IV Compatible
Services sent over non-Router/1000 links are stored in DSAM before transmission. DSAM
is controlled by the NS-ARPA/1000 Memory Manager, and is implemented as a Shareable
Extended Memory Access (SHEMA) partition. Also see Memory Manager, Message Buffers,
clusters, and buffer area.

DLIST
The NS-ARPA/1000 remote directory list monitor. Lists contents of FMGR directories.
Used by the DS/1000-IV Compatible Services.

DS File Transparency
A feature of the RTE operating system that allows you to access remote files. Also called
Transparent File Access (TRFAS).

DS/1000-IV Compatible Links
See HDLC, Bisync, and X.25.

DS/1000-IV Compatible Services (RTE-MPE)

A term used to describe services that can be used for backward compatibility with DS/3000
or NS/3000 nodes over Bisync or X.25 links. These services include Program-to-Program
Communication (PTOP), Remote File Access (RFA), RMOTE, and the Utility Subroutines.

DS/1000-IV Compatible Services (RTE-RTE)

A term used to describe services that can be used for backward compatibility with
DS/1000-IV nodes. These services include Distributed Executive (DEXEC),
Program-to-Program Communication (PTOP), REMAT, Remote Database Access
(RDBA), Remote File Access (RFA), Transparent File Access (TRFAS), Utility
Subroutines, Remote I/O Mapping, Remote System Download, and Remote Virtual Control
Panel (VCP).

DS/1000-IV Compatible Transport

Transport used by the DS/1000-IV Compatible Services (RTE-RTE) and (RTE-MPE) and
DS/1000-1V Compatible Links that are configured with RTR LIs. Each of these transports
is responsible for delivery of data between the source and the destination. Also see Router
Link Interface.

Glossary-4

DSCOPY
An NS-ARPA/1000 module used by Network File Transfer. Establishes a VC connection
with NFTMN at the Producer node. Also see Producer and NFTMN.

DSLIN
The NS-ARPA/1000 module used to establish PSI BISYNC connections to HP 3000s.

DSMOD

An NS-ARPA/1000 program that allows you to alter parameters for DS/1000-IV Compatible
Services that are set by NSINIT during initialization. DSMOD allows the user to change
the HP 3000 ID sequence, re-enable a link, display the Nodal Routing Vector (NRV),
change the non-session password, schedule additional monitors, adjust timing, change the
default session user name, and change the NRV.

DSRTR
The NS-ARPA/1000 transparent file access master. DSRTR is part of the RTE operating
system.

DSTES

An NS-ARPA/1000 module that verifies the PTOP software to a DS/3000 node.

DSVCP

The DS Virtual Control Panel operator interface module for remote control of the
A/L-Series front panel. DSCVP is a DS/1000-IV Compatible Service. Users must run the
program DSVCP to access the control panel of a slave computer, and consequently access
and alters its memory, and CPU and I/O registers. DSVCP can access the boot loader
programs in the VCP and cause various programs to be downloaded, via the NS-ARPA link,
or another loading device. DSVCP can be used over HDLC RTR links only.
Dynamic Rerouting
The capability to automatically reroute messages around inoperative HDLC links without
user intervention. Dynamic rerouting is an option provided by the Router/1000 protocol.
Ethernet Local Area Network

Ethernet is a de-facto standard link level protocol. Ethernet defines a baseband, coaxial,
bus media, and the Media Access Method CSMA/CD. IEEE 802.3 and Ethernet nodes can
coexist on the same cable, but cannot communicate with each other.

event messages
Messages sent between protocol modules to indicate events and pass references to path
records.

EVMON
The NS-ARPA/1000 Event Monitor. Logs disasters, errors, warnings, and internal state
information.

exception select

Can be performed by using the NetIPC call IPCSelect. NetIPC processes can determine
whether certain connections have been aborted by performing an exception select.

Glossary-5

EXECM

The NS-ARPA/1000 remote EXEC slave monitor. Services remote EXEC (DEXEC) calls.
These requests may come from other HP 1000 or HP 3000 nodes. Used by the DS/1000-1V
Compatible Services. Also see Distributed Executive.

EXECW

The NS-ARPA/1000 remote “schedule with wait” monitor. Services remote EXEC
(DEXEQC) requests to schedule programs with wait. To run a program from REMAT or to
execute the LO (load) and PL (program list) commands on memory based nodes, the
remote node must have EXECW. Used by the DS/1000-1V Compatible Services.

FCL66
The NS-ARPA/1000 utility that is used to programmatically force cold load slave computers
over an HDLC RTR link.

FMTRC
The NS-ARPA/1000 program that formats trace files produced by NSTRC. Also see
NSTRC.

fully-qualified node name
An NS-ARPA/1000 node name that includes all three parts of the syntax (i.e., the node,
domain, and organization). Also see node name.

FTP
File Transfer Protocol is an ARPA service that allows you to copy files from one node to
another. The other computer must also support FTP.

gateway node
A node that is a member of two or more networks and allows communication between the
networks to which it belongs.

Gateway Table (GT)
A table used by the Internetwork Protocol (IP) to determine which gateway to route
through to reach a remote network. Also see Internetwork Protocol and DCN information.

General Pool

An area in DSAM that is managed by Memory Manager. Memory Manager allocates all
memory from its General Pool. The General Pool is divided into sub-pools which are
organized into different levels above the General Pool. Also see Memory Manager and
DSAM.

global area
An area in DSAM that is always mapped in. Memory Manager stores information in the
global area that it needs to access frequently or quickly. See DSAM and Memory Manager.

GRPM

The NS-ARPA/1000 transport monitor that acts as the RTE-RTE request/reply processor.
GRPM is scheduled by ID*66 to allocate a class buffer in SAM to receive incoming
messages. GRPM routes incoming message to the Slave Monitor’s class numbers.

Glossary-6

guardian node

A node that allows 91750 nodes to communicate with nodes on remote networks. Guardian
nodes remove IP headers from messages sent over non-Router/1000 links before delivering
them to the 91750 node. Guardian nodes also add IP headers to messages sent from 91750
nodes that are to be forwarded to remote networks.

HDLC

A type of communication link used by NS-ARPA/1000 to connect HP 1000s. Can have a
RTR LI. Networks composed of HDLC links are point-to-point networks and can have
arbitrary topologies. HDLC links can be hardwired or modem connections. Also see
point-to-point network.

hierarchical

A point-to-point network topology. The hierarchical topology is sometimes used with
supervisory-control applications, where large databases exist at one node, possibly along
with control programs, that are accessed by nodes lower in the hierarchy. You can also use
hierarchical topologies for distributed database applications.

IEEE 802.3 Link Interface

NS-ARPA/1000 link interface type that supports a single communication link type: IEEE
802.3 The LI software determines which IEEE 802.3 communication LU to use and sends
the message to the IEEE 802.3 driver. At this point the control of the message moves from
NS-ARPA/1000 to LAN/1000. Also see communication link and Link Interface.

IEEE 802.3 Local Area Network Link

A type of communication link used by NS-ARPA/1000 to join HP 1000s over a relatively
small geographical area to form a LAN. Provides fast links and requires less hardware than
point-to-point links for networks with several nodes. IEEE 802.3 networks are broadcast
bus networks. IEEE 802.3 and Ethernet nodes can coexist on the same cable, but cannot
communicate with each other. Also see broadcast bus network and Ethernet.

IEEE 802.3 network
A group of nodes connected to the same LAN bus. Also see broadcast bus network.

IEEE 802.3 protocol

A protocol used at the Subnet or Intranet Layer (Layer 3s of the NS-ARPA/1000
architecture). IEEE 802.3 defines some layer 3s functions for messages sent over IEEE
802.3 links. With IEEE 802.3 LAN networks, messages are transmitted to every node in the
network and a node accepts only those messages that are addressed to it.

IFPM

An NS-ARPA/1000 transport monitor that acts as an interface between DS/1000-1V
Compatible Services and IEEE 802.3 links for outbound messages. Implements the
Interface Protocol (IFP).

Inbound Address List

A list of LAN addresses maintained by each node in a LAN network. A given node will
receive only those messages that have a destination address that matches an address on its
Inbound Address List. Each node’s Inbound Address List contains the node’s station
address. In addition, a group of nodes may have the same multicast address in their
Inbound Address List. Also see multicast address.

Glossary-7

Inbound Proxy Address

Used by LAN nodes to receive Proxy Name Requests. The Inbound Proxy Address is added
to the Inbound Address List of Probe Proxy Servers only.

Inbound Target Address

Added to every LAN node’s Inbound Address List at initialization time. The Inbound
Target Address allows the LAN nodes to receive Probe Name Requests.

INETD

Internet Network Services Daemon that monitors all incoming connection requests from
TELNET, FTP, SMTP (Mail/1000), and Remote Spool Printing.

Initiator

One of the three logical participants in the Three-Node Model utilized by the
NS-ARPA/1000 User Service Network File Transfer (NFT). The Initiator is located on the
system where the copy request originates, receives the user request and initiates the copy
process. Also see Three-Node Model.

INPRO

The inbound message processor for the NS-ARPA/1000 transport. Contains the inbound
NS-ARPA protocol modules.

Interchange Format

One of the file copying formats used by the NS-ARPA/1000 User Service Network File
Transfer (NFT). Interchange Format must be invoked explicitly using one or more of NFT’s
Interchange Format options. Interchange Format is useful when you want to change certain
source file attributes, such as record length, in the target file.

Interface Protocol (IFP)

Provides the interface between NS Common Services Transport and DS/1000-IV
Compatible Services Transport.

internetwork
Several networks that are joined, or concatenated, to form a network of networks.

internetwork communication
Communication between networks.

Internetwork Protocol (IP)

The NS-ARPA/1000 protocol based on the Defense Advanced Research Projects Agency’s
(DARPA) standard that is implemented at the Internet Layer (Layer 3i) of the
NS-ARPA/1000 architecture. IP is primarily used to route messages between networks via
gateways. It provides gateway-to-gateway routing, store-and-forward service between
gateways, and message fragmentation and reassembly between source and destination
networks. IP routines are contained in the INPRO and OUTPRO message processors.
Also see INPRO and OUTPRO.

Internetwork Protocol (IP) address

An address used by the NS-ARPA/1000 Services and IP. An IP address consists of two parts:
a network address, which identifies the network; and a node address, which identifies the
node within a network. A network address is concatenated with a node address to form the
IP address and uniquely identify a node within a network within an internetwork.

Glossary-8

Intranet Layer

In NS-ARPA/1000, this is layer 3s. Layer 3s is part of the OSI Network Layer and handles
intranetwork routing (routing within a network). NS-ARPA/1000 supports four Layer 3s
protocols: Router/1000, IEEE 802.3, Ethernet, and X.25. Also see Open Systems
Interconnection.

IOMAP
The NS-ARPA/1000 module that provides the user interface for Remote I/O mapping. Also
see Remote I/O Mapping.

P
See Internetwork Protocol.

LAN

Local Area Network. Also see IEEE 802.3 Local Area Network Link and Ethernet Local
Area Network.

LAN station address

An address that HP assigns to each LAN interface card during manufacturing. The station
address is used for addressing within the LAN (subnetwork addressing).

layers

Refers to the layers in the seven-layer Open Systems Interconnection (OSI) network
architecture model developed by the International Standards Organization (ISO). In the
NS-ARPA/1000 network architecture, different transmission and communications tasks are
assigned to each layer, which is a logically distinct module. Also see Open Systems
Interconnection.

LI
See Link Interface.

link
See communication link.

Link Interface (LI)

The software that determines which communication link type to use and then passes the
message to the appropriate driver for the specific communication link. Communication
links are bound to link interface types at NS-ARPA/1000 initialization time. NS-ARPA/1000
supports four LI types: Router (RTR), IEEE 802.3 (802), Ethernet (ETHER) and LAN. If
both IEEE 802.3 and Ethernet are on the same LAN, then the LI type is declared LAN.
Also see Router Link Interface, IEEE 802.3 Link Interface, Ethernet Local Area Network, and
communication link.

local network

The network to which the local node belongs. Also referred to as the Directly Connected
Network (DCN).

local node

Refers to the node where you are physically located and logged on, and at which you enter
commands.

Glossary-9

LOG3K
The NS-ARPA/1000 module that provides operator control over recording of DS messages
to and from HP 3000s.

link type
See communication link.

LUMAP
The NS-ARPA/1000 DEXEC request module for Remote I/O Mapping. Also see Remote
1/O Mapping.

LUQUE
The NS-ARPA/1000 module that provides class buffers for Remote I/O mapped data
transfer. Also see Remote I/O Mapping.

#MAST

Handles request buffers for master routine subroutine calls. Adds a Router/1000 header to
the request and passes it to GRPM or to the transmission LU. Used by the DS/1000-IV
Compatible Services.

$MWB
The NS-ARPA/1000 module needed by APLDR to move words across maps. Provided by
the RTE operating system. Also see APLDR.

master-slave protocol
The sequence of messages exchanged between master and slave Program-to-Program
(PTOP) programs. Also see Program-to-Program Communication.

MATIC
An NS-ARPA/1000 module that provides timeout processing for Message Accounting.
Used by the DS/1000-IV Compatible Services and Links.

Memory Manager

Manages DSAM, the NS-ARPA/1000 memory area. Memory Manager divides DSAM into
three areas: global area, tables area, and buffer area. Also see global area, tables area, and
buffer area.

Message Accounting (MA)
A datagram-oriented protocol that retransmits lost messages and suppresses duplicate
messages. The DS/1000-IV Compatible Transport (RTE-RTE) uses Message Accounting.

Message Buffers (MBUFs)
Part of the DSAM buffer area. An MBUF is 128 bytes of contiguous physical memory.

monitor

In NS-ARPA/1000, a monitor is a software module that is scheduled at node initialization
time, or by DSMOD, and remains scheduled until NS-ARPA is shut down. There are three
types of NS-ARPA/1000 monitors: Transport Monitors, Slave Monitors, and Converters.
Also see Transport Monitors, Slave Monitors, Converters, and watch dogs.

Glossary-10

MMINIT
The Memory Manager initialization program. MMINIT sets up DSAM. MMINIT is
scheduled by NSINIT at initialization. Also see Memory Manager, DSAM, and NSINIT.
multicast address

An address that may be included in the Inbound Address List of a node in a LAN network.
A group of nodes may have the same multicast address in their Inbound Address List.
Messages with that multicast address are received by all nodes in that group. Probe uses
multicast addresses to send messages to HP nodes in a LAN. Two Probe multicast
addresses are used at each LAN node: a Target Address and a Proxy Address. Also see
Inbound Address List, Probe, Target Address, and Proxy Address.

MVCP3
The NS-ARPA/1000 module used to install the PTOP slave program COPY3K.PUB.SYS on
an HP 3000 for use in implementing the RMOTE MO command. Also see RMOTE.

name
Used to identify objects, such as nodes and sockets. In NS-ARPA/1000, nodes are assigned
node names. Also see node names.

NetIPC

See Network Interprocess Communication.

NetIPC root socket
NetIPC allocates one root socket for each NetIPC process. The root socket is used as an
endpoint to lower level protocols and sets up a path for any call or VC sockets requested by
the user.
NetIPC user record
NetIPC allocates one user record for each NetIPC process. NetIPC uses this record to
keep track of that process’s NetIPC sockets and other resources used for NetIPC.
network
A group of computer systems connected so that they can exchange information and share
resources. More specifically, see Router/1000 network and IEEE 802.3 network.
network architecture
A structured, modular design for networks.

network boundary
The division between networks in an internetwork. Also see internetwork.

Network File Transfer (NFT)
An NS-ARPA/1000 User Service that allows you to copy files from one node to another
interactively or programmatically. Cross-system NFT is also supported.

Network Interprocess Communication (NetIPC)

An NS-ARPA/1000 User Service that allows autonomous processes running concurrently at
different nodes to exchange information in a peer-to-peer manner. Cross-system NetIPC is
also supported.

Glossary-11

Network Layer

Layer 3 of the OSI model. Tasks include determining the routes messages take to get from
one node to another. In NS-ARPA/1000, this layer is split into two sub-layers, 3i and 3s.
Layer 3i handles internetwork routing and 3s handles subnetwork or intranetwork routing,
which is routing within the network.

network map

A diagram of the links and nodes in your network. A network map should include node
information (system type and resources, peripherals, amount of memory, services
supported) and link information (location of coaxial cables, terminators, repeaters, AUI
cables, and MAUSs). In addition, you should mark network boundaries, link interface types,
card types, and the names and addresses that you assign.

For an internetwork, the network map shows how different networks are connected. A
network map for an internetwork includes the following: the network names and types
(and, if applicable, a unique IP address for each network), the gateway nodes, and the
network boundaries.

Network security code
A code consisting of two alphanumeric characters that is required for the following tasks:
shutting down NS-ARPA/1000 (via NSINIT); establishing Remote 1/O maps; modifying
timing parameters; changing the Nodal Routing Vector (via DSMOD).

Network User’s security code
A code consisting of two alphanumeric characters that is required to execute the REMAT
SW (switch) command; thus it is used to restrict REMAT access to remote nodes. Also see
REMAT.

NFT

See Network File Transfer.

NFTMN

The Network File Transfer monitor program. NFTMN is scheduled at initialization time
and remains scheduled, waiting for an IPCRecvCn call, until NS-ARPA is shut down. At
the Producer node, NFTMN schedules PRODC; the NFTMN at the Consumer node
schedules CONSM. Also see Producer, Consumer, PRODC, and CONSM.

Nodal Path Reports (NPRs)

Contains information stored in DSAM by the Nodal Registry software. Nodal Path Reports
map node names to address information. NPRs are indexed according to node name, and
each contain an IP address (or addresses, if the node belongs to multiple networks). If the
node has LAN links, the NPR can also contain a LAN station address for each link. In
addition, an NPR denotes which protocols and NS Common Services the node supports.

Nodal Registry
The NS-ARPA/1000 software that manages information that the transport and services use
to establish connections with remote nodes.

Nodal Routing Vector (NRV)

Used by Router/1000 for subnet routing with Router/1000 networks and for address
information for DS/1000-IV Compatible Services (RTE-RTE).

Glossary-12

node
A computer system in a network.

node names

Each computer system, or node, in an NS-ARPA/1000 network has a node name.
NS-ARPA/1000 node names contain three fields: a node, domain, and organization. Also
see fully-qualified node name.

node number
See Router/1000 address.

NRINIT
The Nodal Registry initialization program.

NRLIST
The Nodal Registry List program. Lists the contents of the Nodal Registry.

NRV
See Nodal Routing Vector.

NS Common Services
A term used to refer to the services: Network File Transfer (NFT), Network Interprocess
Communication (NetIPC), and Remote Process Management (RPM).

NSERRS.MSG
The name of the Network File Transfer message file. Must be on /system.

NSINF

The NS-ARPA/1000 information utility. Prints local address information, configured
NS-ARPA/1000 resources, NS-ARPA/1000 network management utilities status and
statistics, Memory Manager statistics, NS-ARPA/1000 program information, DS/1000-IV
Compatible Services information, Nodal Routing Vector information, Remote Session
information, and Message Accounting information.

NSINIT
NSINIT and its subordinate programs (NSPR1, NSPR2, NSPR3, NSPR4, NSPRS5, NSPRo,
and NSPARS) initialize and shut down the network.

NSINIT.MSG
The name of the NSINIT message file. Must be on /system.

NSTRC
The NS-ARPA/1000 trace utility. Records messages at the socket and network level.

Open Systems Interconnection (OSI)

A seven-layer network architecture model developed by the International Standards
Organization (ISO). In the OSI model, transmission and communication tasks are assigned
to logically distinct modules called layers. Each layer communicates with the layer directly
above and below it, and through the layers below it to its peer in the remote computer. The
OSI model defines seven layers: Application Layer, Presentation Layer, Transport Layer,
Network Layer, Data Link Layer, and Physical Layer.

Glossary-13

OPERM
An NS-ARPA/1000 slave monitor that provides remote RTE operator command capability.

OSI

See Open Systems Interconnection.

Outbound Proxy Address
Used by LAN nodes to send Proxy Name Requests.

Outbound Target Address

Used by LAN nodes to send Probe name and address requests (Name Requests and Virtual
Address Requests).

OUTPRO

The outbound message processor for the NS-ARPA/1000 transport. Contains the outbound
NS-ARPA protocol modules.

Packet Exchange Protocol (PXP)

An HP protocol that provides a low-overhead datagram service. PXP is a low-overhead
request/reply protocol that is suited for querying data sources. PXP suppresses duplicate
replies to a request but does not suppress responses to duplicate requests. PXP retransmits
messages that are not acknowledged within a timeout interval. Socket Registry is the only
NS-ARPA/1000 service that uses PXP; it is not user accessible. PXP is included in INPRO
and OUTPRO.

path

The course within a machine that a message takes, typically through software protocol
handlers.

path records

The data structures in which the NS-ARPA/1000 protocols keep address and other context
information. The protocol modules also use path records to guide messages to the next
appropriate protocol. Path records are logical records; the actual data structures that hold
path record information are given different names by the protocols and usually contain
other, protocol-specific, information.

path report
Created by the socket registry. Path reports are returned to NetIPC processes in the form
of a path report descriptor. The path report contains addressing information that is used by
the calling process to direct requests to a certain call socket at a certain node.

path report descriptor

A descriptor used by NetIPC processes to refer to a path report. A NetIPC process obtains
a path report descriptor by invoking either the IPCLookUp or IPCGet call. Also see path
report.

PCB
See Protocol Control Block, Probe Control Block or PTOP Control Block.

Glossary-14

Physical Layer
Layer 1 of the OSI model. Transmits the electrical signals over the link.

point-to-point network
A network in which communication travels from one node (point) to another node over the
links.

pool LU
Used for X.25 connections to HP 3000s (DS/1000-IV Compatible Services).

POOL Table
Contains entries for each concurrent remote user or program, including monitors, that
access the local node to use DS/1000-IV Compatible Services (RTE-RTE).

PRDC1
An NS-ARPA/1000 module used by Network File Transfer. PRDCI is scheduled by
PRODOC if the user specifies a file mask. PRDCI1 is required at the Producer node if file
masks are used. Also see PRODC and Producer.

Probe

A protocol that allows LAN nodes to query one another for Nodal Path Reports and other
address information. The Probe protocol provides the following features: node name to
Nodal Path Report mapping; IP address to LAN station address mapping; Nodal Registry
updates. Also see Nodal Path Reports.

Probe addresses

See Inbound Address List, multicast address, Target Address, and Proxy Address.

Probe Control Block (PCB)
Required for each active Probe query.

Probe Proxy Server

Provides Nodal Path Reports (NPRs) for any node in an internetwork. If a LAN has a
Probe Proxy Server, all nodes on that LAN can get the NPRs they need from the Probe
Proxy Server; at the other nodes on the LAN, only the NPR for that node must be
configured. Also see Nodal Path Reports.

Process Number List (PNL)
List containing TCBs used for transactions to HP 3000s (DS/1000-IV Compatible Services).
Also see Transaction Control Block.

PRODC

An NS-ARPA/1000 module used by Network File Transfer. PRODC establishes a VC
connection with the monitor NFTMN at the Consumer node (the node to which the file will
be copied). Also see NFTMN, Consumer, PRDCI, and Producer.

Producer

One of the three logical participants in the Three-Node Model utilized by the
NS-ARPA/1000 User Service Network File Transfer (NFT). The Producer is located on the
same node as the source file, accesses that file and produces the data that is to be copied.

Glossary-15

PROGL

The NS-ARPA/1000 slave monitor used for remote download from Communication
Bootstrap Loader (CBL). Can simultaneously handle requests from up to 20 nodes at the
same time. User supplied subroutines enable store-and-forward and/or LU to file
conversion capabilities. Can be used over HDLC RTR links only. PROGL is used by the
DS/1000-IV Compatible Services.

protocol
A set of rules for a particular communication task. A protocol handler or protocol module
is a piece of software that implements a particular protocol.

Protocol Control Block (PCB)
Used by TCP and PXP to keep track of protocol-specific parameters such as segment sizes
and time values.

protocol EMASs

A term used to describe EMA partitions that are used by the NSINIT subordinate programs
(NSPR1, NSPR2, NSPR3, NSPR4, NSPRS, and NSPR6). Protocol EMAs are used to build
protocol tables before moving the tables to DSAM.

Proxy Address

One of the two Probe multicast addresses that must be configured at each LAN node.
Probe uses this address for two other addresses: an Inbound Proxy Address and an
Outbound Proxy Address. Also see Inbound Proxy Address and Outbound Proxy Address.

protocol module
A group of software modules that implement a given protocol. For example, the TCP
protocol module is the collective term for the group of software routines that implement the
TCP protocol.

Presentation Layer
Layer 6 of the OSI architecture. Tasks include manipulation of user data such as text
compression and encryption.

Program-to-Program Communication (PTOP)
An NS-ARPA/1000 User Service that enables a “master” program on one node to exchange
information with and control the execution of a “slave” program on another node.

PTOP Control Block (PCB)
Parameter used in PTOP calls which serves as a control for the data link. Also see
Program-to-Program Communication.

PTOPM

The NS-ARPA/1000 PTOP communication slave monitor. Handles programmatic POPEN,
PREAD, PWRIT, PCONT, and FINIS requests and REMAT commands SO (slave off) and SL
(slave list) on the slave side.

PXP
See Packet Exchange Protocol.

Glossary-16

QCLM

An NS-ARPA/1000 transport monitor that acts as a communications error logger. QCLM
prints most errors for the DS/1000-IV Compatible Services modules, the DS/1000-IV
Compatible Transport, and the HDLC driver.

QUEUE

An NS-ARPA/1000 program that is scheduled by the interface driver to allocate a class
buffer in SAM to receive incoming messages.

QUEX
An NS-ARPA/1000 transport monitor used for HP 3000 communication.

QUEZ
An NS-ARPA/1000 transport monitor used for HP 3000 I/O completions.

raw NPRs

Character strings that the Nodal Registry initialization program, NRINIT, uses to build
Nodal Path Reports. A raw NPR contains a node name and an IP address or addresses. If
the node has a LAN link, the raw NPR can also contain a LAN station address or addresses.
Also see Nodal Path Reports.

RDBAM
The NS-ARPA/1000 remote database access slave monitor.

read select

A read select can be performed by using the NetIPC 1pCSelect call. NetIPC processes
can determine whether certain VC sockets are readable by performing a read select. A
readable socket is one that can immediately satisfy a receive request for a number of bytes
greater than or equal to its read threshold.

read threshold

Used by NetIPC processes that exchange data in asynchronous mode. A NetIPC process
determines whether a VC socket is readable by examining the socket’s read threshold. A
VC socket is considered readable if it can immediately satisty a receive request for a
number of bytes greater than or equal to its read threshold.

READR
A LAN/1000 module for the Node Manager.

redundant links

Provide alternative routes between nodes in a Router/1000 network. If a node or link fails,

the nodes can still communicate by rerouting around the failure. In a Router/1000 network
with Dynamic Rerouting, the rerouting is automatic; otherwise you must explicitly configure
new routes around the failure. Also see Dynamic Rerouting.

REMAT

A DS/1000-1V Compatible Service that allows you to send RTE commands, or special
REMAT commands, to any HP 1000 computer in your network.

Glossary-17

Remote Database Access
A DS/1000-1V Compatible Service that allows you to access an IMAGE database at a
remote HP 1000.

Remote File Access (RFA)
A DS/1000-IV Compatible Service that enables you to perform I/O operations to files
located at remote nodes.

Remote I/O Mapping
A DS/1000-IV Compatible Service that maps I/O requests from one node to another,
allowing resource sharing.

Remote Process Management (RPM)
An NS-ARPA/1000 User Service that allows you to schedule, control, or terminate programs
located at the same or different HP 1000 nodes in your network.

Remote System Download
A DS/1000-IV Compatible Service that allows you to download an operating system file to a
remote HP 1000.

Remote Virtual Control Panel (VCP)

A DS/1000-1V Compatible Service that allows you to operate the VCP of a remote node.
This feature is useful for applications that require a remote, terminal-less node (such as a
harsh operating environment).

rerouting

The capability to reroute messages around inoperative links.

remote network

Any network in the internetwork to which the local node does not belong.

remote node
Refers to a node that is not physically located where you are, and which you communicate
with via data communication.

resource sharing

The most significant feature of a network. Elements at each node are accessible from other
nodes in the network. These elements may include disk files, printers, magnetic tapes,
terminals, and other programs.

RFA

See Remote File Access.

RFAM

The NS-ARPA/1000 remote file access slave monitor. Used for FMGR files only and must
reside at the node at which the file resides. Used by the DS/1000-IV Compatible Services.

Glossary-18

RMOTE

A DS/1000-1V Compatible Service that creates an interactive session for you on a remote
HP 3000 in your network, making your terminal appear to be directly connected to the
other system.

ring

A point-to-point network topology. The ring is a string topology with an additional link
between the end nodes. The store-and-forward delay is half that of a string topology
because the maximum number of intervening nodes is halved. The ring topology is suited
for data-sharing applications in which data stored at various nodes are accessible from all
nodes. Ring networks are less vulnerable than string networks. If any one link fails, all the
nodes can still communicate by rerouting around the failure. Also see string.

root socket
See NetIPC root socket.

route
The course through the network that a message takes from a source node to a destination
node. A route can pass through intervening nodes.

Router Link Interface (RTR LI)

An NS-ARPA/1000 Link Interface that supports three communication link types: HDLC,
X.25, and Data Link (master only). RTR LlIs offer the following features: Dynamic
Rerouting (HDLC only), low-overhead for DS/1000-IV Compatible Services, high-overhead
for NS Common Services. The nodes linked by the RTR LI are members of the same
network. Also see Dynamic Rerouting and communication link.

Router/1000

A protocol used at the Subnet or Intranet Layer (Layer 3s of the NS-ARPA/1000
architecture). Router/1000 provides store-and-forward and Dynamic Rerouting services for
messages sent over HDLC links. Optionally provides rerouting and and Message
Accounting. Also see rerouting and Message Accounting.
Router/1000 address
An address used by the DS/1000-IV Compatible Transport and Router/1000 software.
Called “node number” on 91750 nodes. Must be unique to the internetwork.
Router/1000 header
Message header used for DS/1000-IV Compatible Services and Transport. In the 91750
product, this header is referred to as the DS message header.
Router/1000 network

A group of nodes that are connected by RTR LIs. There may be redundant, non-RTR LlIs
in a Router/1000 network, but for any two nodes in the network, a route must exist between
them that consists only of RTR Lls.

RPCNV
The NS-ARPA/1000 to DS/3000 reply converter.

Glossary-19

RPM

See Remote Process Management.

RQCNV
The NS-ARPA/1000 to DS/3000 request converter.

RTR LI
See Router Link Interface.

#SEND
An NS-ARPA/1000 module that is used with Dynamic Message Rerouting. #SEND sends
update messages to neighboring nodes. #SEND is part of Router/1000.

#SLAV
Called by the DS/1000-IV slave monitors to send a reply and data, if any, back to the origin
node. Used by the DS/1000-IV Compatible Services.

SAM
See System Available Memory.

SAP
Service Access Point. The only IEEE-defined SAP currently defined is 6 for IP
(Internetwork Protocol).

SBUFs
See socket buffers.

Session Layer
Layer 5 of the OSI model. Tasks include connection establishment negotiation at remote
nodes.

Slave Monitors
NS-ARPA/1000 monitors that service incoming requests for local resources from remote
nodes.

SMB
See System Memory Block.

socket

Used to establish communication between NetIPC processes. Processes make use of
sockets via the NetIPC calls to establish connections and exchange data. The
NS-ARPA/1000 Transport Layer’s Transmission Control Protocol (TCP) regulates the
transmission of data to and from sockets.

socket buffers

Memory Manager allocates an inbound and an outbound SBUF for each NetIPC socket to
hold queued inbound and outbound messages. Also see Memory Manager.

Glossary-20

Socket Registry

Contains a listing of all the named call sockets that reside at a node. NetIPC processes
reference call sockets created by other processes by passing a socket name and the
corresponding node name to the socket registry software. The socket registry determines
which socket is associated with the name and formats the address information to that socket
into a path report which it returns to the inquiring process. Socket Registry is not directly
accessible by the user.

star

A point-to-point network topology. The star topology is often used for centralized data
collection, supervisory control, or in an application where the outlying nodes have little
storage capacity. It is also used when a central node has a large database or control
program that is accessed by the other nodes. In a star network, there is at most one
intervening node between any two nodes. Star networks are vulnerable to failure of the
central node. If the central node fails, no network communication is possible.

station address
See LAN station address.

store-and-forward

A method of forwarding messages in a network. In a store-and-forward network, a node
can send a message to another node to which there is no direct link. Intermediate nodes
can forward the message to the correct destination node. Messages can be stored and
forwarded between several nodes.

stream mode

The mode of data transfer used by NetIPC processes. Data transferred between two
NetIPC processes is treated as byte stream. When data arrives at a destination VC socket,
it is simply appended to any data that may have already been sent to that socket. No
attempt is made to preserve boundaries between data sent at different times.

string

A point-to-point network topology. The string topology requires one less communication
link than there are computers in the network, and requires the fewest number of links. For
communication between non-adjacent nodes, messages are stored and forwarded by
intervening nodes. If a link fails, the nodes separated by the failure will not be able to
communicate.

subnet mask

A mask that specifies the subnet number in an IP address. The node address portion of an
IP address is divided into a subnet number and a node number. The bits in the subnet mask
are set to 0 for the node number portion and 1 for the network address and subnet number
portions.

subnetting

An optional addressing scheme that partitions the node address portion of an IP address
into distinct subnetworks. The node address is divided into a subnet number and a node
number. Subnetting allows you to use one network address for two or more physically
distinct networks. Each network is then a subnetwork. The physical networks are
connected via gateways.

Glossary-21

subnetwork

A network that may be a member of an internetwork. Also see Intranet Layer and compare
with Internetwork Protocol and internetwork.

subordinate programs
Programs that are part of NSINIT. Also see NSINIT.

synchronous mode

A mode of data exchange utilized by NetIPC processes. When NetIPC processes exchange
data in synchronous mode, send and receive requests cause the calling process to be
suspended until the request can be satisfied, a synchronous timeout occurs, or an error is
detected.

SYSAT

The NS-ARPA/1000 System Attention Module required for Remote I/O Mapping. Sends a
message to a remote system to set a program’s break flag. Also used to send the System
Attention request to a remote system. Used by the DS/1000-1V Compatible Services.

System Available Memory (SAM)

In NS-ARPA/1000, SAM is used as a buffer area between the NS-ARPA/1000 device drivers
and the Transport. All inbound and outbound NS-ARPA messages pass through SAM.

System Memory Block (SMB)

A memory area in the system map that is specified at system generation time by the
generator MB command. In NS-ARPA/1000, SMB is used for some tables provided for
DS/1000-1V compatibility.

tables area

An area in DSAM that is dynamically mapped in as tables are requested. The tables area
contains the dynamically-sized NS-ARPA tables used by protocols and services, which are
referenced in the global area. Also see DSAM.

TCB
See Transmission Control Block.

TCP
See Transmission Control Protocol.

TELNET

An NS-ARPA/1000 User Service that allows you to have a virtual terminal connection to
another computer in your network. The other computer must also support TELNET.
TELNET stands for TELecommunications NETwork. TELNET communicates using the
TELNET protocol which is a standard ARPA service.

Three-Node Model

The model utilized by the NS-ARPA/1000 User Service Network File Transfer (NFT). The
Three-Node Model has three logical participants: the Initiator, the Producer, and the
Consumer. All three participants are logically distinct. They may be three separate
processes on three separate nodes, or any two, or all three, may reside on the same node.
Also see Initiator, Producer, and Consumer.

Glossary-22

Transaction Status Table (TST)

Used to keep track of all master requests from an HP 3000. Provides storage for
information from the DS/3000 fixed format header and DS/1000-IV information generated
by ROQCNV.

Transmission Control Block (TCB)

A TCB is allocated for each program that uses DS/1000-IV Common Services. The TCB
keeps track of requests until a reply is received or the request times out.

Transmission Control Protocol (TCP)

The Transport Layer (Layer 4) of the NS-ARPA/1000 architecture implements the
Transmission Control Protocol (TCP), which is based on the DARPA standard. TCP is a
stream-based (rather than a message-based) protocol that provides non-duplicated,
in-sequence data delivery. TCP accepts arbitrarily long data buffers, segments them into
packets and sends each packet separately. TCP keeps track of the bytes sent and
retransmits them if they are not acknowledged within a timeout interval. TCP at the
receiving node reassembles the packets, so that they are delivered to the user (NetIPC) in
order (in-sequence delivery). All NS-ARPA/1000 services use TCP except Socket Registry
and the DS/1000-IV Compatible Services. TCP is part of INPRO and OUTPRO.

Transparent File Access (TRFAS)
A feature of the RTE operating system that allows you to access remote files. Also called
DS File Transparency.

Transparent Format
One of the file copying formats used by the NS-ARPA/1000 User Service Network File
Transfer (NFT). Transparent Format is invoked by default when files are copied between
NS-ARPA/1000 systems. It does not alter a file’s attributes, but simply copies the file.
transport
A term used to collectively refer to layers 1 through 4 of the OSI model. Also see Open
Systems Interconnection.
Transport Layer

Layer 4 of the OSI model. Responsible for end-to-end data integrity. End-to-end indicates
that Layer 4 communicates with its peer only at the source and destination nodes, not at
intermediate nodes. Layers 5 through 7 also provide end-to-end services, while Layers 1
through 3 are responsible for data integrity between each node. Also see Open Systems
Interconnection.
Transport Monitors
NS-ARPA/1000 monitors that process inbound or outbound messages. Transport Monitors
act as an interface between the user services and the communication device drivers.
TRC3K

The NS-ARPA/1000 module that formats the data recorded by LOG3K. Also see LOG3K.

TRFAS
See Transparent File Access.

Glossary-23

TST

See Transaction Status Table.

UPLIN

user

An NS-ARPA/1000 module that cleans up NetIPC resources such as TCBs and user records.
It is also the timeout and re-enable module that maintains a running time on all
transactions, artificially terminates (“times out”) any transaction that is not serviced within
a user-specifiable time limit. It can restart any HP-supplied slave monitor that has been
aborted, and logoff HP 3000 or HP 1000 sessions whose creating program has terminated
with a session still outstanding. Also see Transaction Control Block and user record.

record
See NetIPC user record.

Utility Subroutines

A set of NS-ARPA/1000 programmatic calls that enable you to perform special tasks such as
downloading absolute or memory-image program files to memory-based nodes and
programmatic remote logons to RTE-6/VM and RTE-IV systems.

VCPMN

The NS-ARPA/1000 Virtual Control Panel Monitor. This module monitors the Virtual
Control Panel of a remote A/L-Series CPU. VCPMN intercepts and displays VCP
messages on the system console of the neighbor node that is the master of the remote
system, which is the slave. VCP is a DS/1000-IV Compatible Service.

virtual circuit

See virtual circuit connection.

virtual circuit connection

A connection between two NetIPC processes. Virtual circuit connections are the basis for
interprocess communication. Once a virtual circuit is established, the NetIPC processes
that share it may use it to exchange data. A virtual circuit connection has two major
properties: it is a dedicated link, accessible only to the two processes that established the
connection; and it provides reliable service, guaranteeing that data will not be corrupted,
lost, duplicated or received out of order.

virtual circuit socket

Used by NetIPC processes to create a virtual circuit connection. Virtual circuit (VC)
sockets are the endpoints of a virtual circuit connection.

virtual circuit socket descriptor

Refers to a virtual circuit (VC) socket. A VC socket is the endpoint of a virtual circuit
connection between two processes. A VC socket descriptor is returned by the NetIPC calls
IPCRecvCn and IPCConnect after an initial dialogue takes place over a connection
formed by call sockets. A NetIPC process can also obtain a VC socket descriptor given
away by another process by invoking the NetIPC call IPCGet.

watch dogs

NS-ARPA/1000 modules that keep track of internal timing and clean up system resources.

Glossary-24

write select

A write select can be performed by using the NetIPC call IPCSelect. NetIPC processes
can determine whether certain VC sockets are writeable by performing a write select. A
writeable socket is one that can immediately satisfy a send request for a number of bytes
less than or equal to its write threshold.

write threshold

Used by NetIPC processes that exchange data in asynchronous mode. A NetIPC process
determines whether a VC socket is writeable by examining the socket’s write threshold. A
VC socket is considered writeable if it can immediately satisfy a send request for a number
of bytes less than or equal to its write threshold.

X.25

A type of communication link used by NS-ARPA/1000 to provide connections to Packet
Switching Networks (PSNs), also known as Value Added Networks (VANs). X.25 links are
useful for long-distance communication, and can be more economical than leased lines in
some applications. X.25 links have no store-and-forward or dynamic rerouting capabilities.
X.25 links can have RTR Lls only and can be used for NS-ARPA and DS/1000-IV
compatible services.

X.25 protocol

A protocol used at the Subnet or Intranet Layer (Layer 3s of the NS-ARPA/1000
architecture). X.25 defines some layer 3s functions for messages sent over X.25 links. X.25
networks define routing and store-and-forward features within Packet-Switching Networks.

Glossary-25

Bibliography

NS and NS-ARPA/1000-Related Manuals:

NS-ARPA/1000 User/Programmer Reference Manual (91790-90020)
NS-ARPA/1000 Generation and Initialization Manual (91790-90030)
NS-ARPA/1000 Maintenance and Principles of Operation Manual (91790-90031)
NS-ARPA/1000 Quick Reference Guide (91790-90040)

NS-ARPA/1000 Error Message and Recovery Manual (91790-90045)

NS Message Formats Reference Manual (5958-8523)

NS Cross-System NFT Reference Manual (5958-8563)

NS-ARPA/1000 DS/1000-1V Compatible Services Manual (91790-90050)
NS-ARPA/1000 BSD IPC Programmer’s Manual (91790-90060)

File Server Reference Guide for NS-ARPA/1000 and ARPA/1000 (91790-90054)

HP 9000 Manuals:

Using Network Services (B1012-90010)
Using ARPA Services (B1014-90006)

HP 3000 MPE V Manuals:

NS3000/V" User/Programmer Reference Manual (32344-90001)

NetIPC 3000/V Programmer’s Reference Manual (5958-8581)

NS3000/V Network Manager Reference Manual, Volume I (32344-90002)
NS3000/V Network Manager Reference Manual, Volume II (32344-90012)
NS3000/V Error Message and Recovery Manual (32344-90005)

HP 3000 MPE XL Manuals:

NS3000/XL Operations and Maintenance Reference Manual (36922-61005)
NetIPC 3000/XL Programmer’s Reference Manual (36920-61005)
NS3000/XL Error Message Reference Manual (36923-61000)

DS and DS-Related Manuals:

DS/1000-1V User’s Manual for RTE-A and RTE-6/VM (91750-90012)

DS/1000-1V Network Manager’s Manual Generation and Initialization for RTE-A and
RTE-6/VM (91750-90013)

DS/1000-1V Theory of Operation and Troubleshooting for RTE-A and RTE-6/VM
(91750-90014)

DS/1000-1V Quick Reference Guide for RTE-A and RTE-6/VM (91750-90015)

X.25 Manuals:

DSN/X.25/1000 Reference Manual (91751-90002)
DSN/X.25/1000 Advanced Guide (91751-90003)
NS X.25 3000/V Link Guide (24405-90002)

Bibliography-1

RTE-A Manuals:

Getting Started with RTE-A (92077-90039)

RTE-A Driver Reference Manual (92077-90011)

RTE-A User’s Manual (92077-90002)

RTE-A Print and Spooling Reference Manual (92077-90248)

RTE-A Backup and Disk Formatting Utilities Reference Manual (92077-90249)
RTE-A LINK User’s Manual (92077-90035)

RTE-A Programmer’s Reference Manual (92077-90007)

RTE-A System Generation and Installation Manual (92077-90034)

LAN/1000 Manuals:

HP 12076A LAN/1000 Link Local Area Network Interface Controller (LANIC) Installation
Manual (12076-90001)

HP 12076A LAN/1000 Link Node Manager’s Manual (12076-90002)

HP 120794 LAN/1000 Link Direct Driver Access Manual (12079-90001)

Bibliography-2

Index

Symbols C
.. command, FTP, 3-19 call socket descriptor, 5-3
! command, FTP, 3-17 CD command, FTP, 3-28
? command CDS
FTP, 3-18, 3-42 RPM, 6-24, 6-39
TELNET, 2-10 RPM programs, 6-3, 6-4
-g option, file name expansion, FTP, 3-2 CDS program, RPM, 6-14
-1 option, interactive prompting, FTP, 3-2 CDS programs, 1-8
-1 option, log file, FTP, 3-2, 3-44 chained TELNET sessions, 2-3, 2-20
-n option, auto-logging, FTP, 3-2 checking the status of a connection, 5-8
-t option, command input file, FTP, 3-2, 3-74 checksumming, cross-system, 5-28, 5-29, 5-31
-v option, verbose output, FTP, 3-2, 3-78 child program, RPM, 6-4, 6-21
$CMNDO environment variable, 3-14 CI programs, from FTP, 3-17
$CMNDO_LINK environment variable, 3-14 clients, maximum number, 5-80
/ command, FTP, 3-20 CLOSE command
FTP, 3-29
A TELNET, 2-11
CMNDO monitor, 3-14
AddOpt, 5-73, 6-5 command input file, FTP, 3-74
example, 6-20 command stack, FTP, display with / command, 3-20
RPM, 6-19, 6-20 communication links, 1-1
RPM example, 6-34 BISYNC, 1-7
AddOpt example, RPM, 6-37 Ethernet, 1-7
AdrOf, 5-75 HDLC, 1-7
Advanced Research Projects Agency, ARPA, 1-3, IEEE 802.3, 1-7
2-1 LAN, 1-7
APPEND command, FTP, 3-22 X.25, 1-7
Application layer, 1-2 computer network, 1-1
ARPA, 1-3, 2-1 connections, 5-2
ASCII, DSCOPY option, 4-7 controlling programs, RPM, 6-9
ASCII command, FTP, 3-23 copy descriptor, 4-6
assign partition, RPM, 6-24 creating a call socket, 5-4
asynchronous 1/O, 5-14 Cross-system
IPCRecv, 5-56 checksumming, 5-28, 5-29, 5-31
IPCRecvCn, 5-61 NetIPC, 5-25, 5-27, 5-29, 5-31
IPCSend, 5-68 HP 3000, 5-25, 5-26, 5-27, 5-29
read and write thresholds, 5-14 HP 9000, 5-25, 5-26, 5-27, 5-28
ATACH, RPM, 6-5 PC, 5-25, 5-26, 5-27, 5-31
AYT parameter, TELNET SEND command, 2-22 program examples, 5-80, 5-83
NetIPC calls, 5-26
B send and receive sizes, 5-28, 5-29, 5-31
socket sharing, 5-28
BELL command, FTP, 3-24 TCP protocol address, 5-28, 5-29, 5-31
Berkeley Sockets, 1-4 cross-system NetIPC
BINARY, DSCOPY option, 4-7 HP 3000, 5-1, 5-37, 5-41, 5-44, 5-59, 5-62, 5-68,
BINARY command, FTP, 3-25 5-71
BISYNC, 1-7 HP 9000, 5-1, 5-37, 5-41, 5-44, 5-59, 5-62, 5-68,
block mode TELNET, 2-5 5-71
BREAK parameter, TELNET SEND command, PC, 5-1, 5-37, 5-41, 5-44, 5-59, 5-62, 5-68, 5-71
2-23 cross-sytem, NetIPC, 5-28

BSD IPC, 1-3, 1-4
BYE command, FTP, 3-27, 3-36, 3-62
byte addresses, 5-75

Index-1

D

data interpretation, 4-4
Data Link layer, 1-2
data parameter, 5-17, 5-21
byte address manipulation, 5-22
data buffer, 5-23
obtaining byte address, 5-75
type coercion, 5-23
vectored data, 5-23
data partition
modify, 6-29
RPM, 6-29
data vector, 5-21
DATA_WAIT, 5-56
DATA_WAIT flag, 5-53
DEBUG command, FTP, 3-30
DELETE command, FTP, 3-31
deleting directories, FTP
with DELETE command, 3-31
with MDELETE command, 3-47
deleting files, FTP
with DELETE command, 3-31
with MDELETE command, 3-47
dependent child, RPM, 6-12
dependent RPM programs
remote process management, 6-15
terminating, 6-15
descriptors, 5-3
releasing, 5-10
resources associated with, 5-10
detecting connection requests, 5-65
DEXEC, 1-4
RPM, 6-2
DIR command, FTP, 3-32
directories
accessing parent directory in FTP, 3-19
creating remote directories in FTP, 3-51
current working directory in FTP, 3-61
deleting in FTP, 3-31
multiple directories, 3-47
listing directory in FTP, 3-45, 3-56
listing in FTP, 3-32, 3-34, 3-48, 3-52
removing in FTP, 3-67
renaming in FTP, 3-66
RTE-A, 1-10, 3-8
setting working directory in FTP, 3-28, 3-43
distributed executive, 1-4
DL command, FTP, 3-34
domain, in node names, 1-8
DS/1000 compatible user services, 1-3
DS/1000-IV compatible services
program-to-program communication, 1-4
REMAT, 1-4
remote file access, 1-4
RMOTE, 1-4
RTE-MPE, 1-3
RTE-RTE, 1-3

Index-2

DSCOPY, 4-5
breakmode commands, 4-12
abort, 4-12
cancel, 4-12
help, 4-12
status, 4-12
case sensitivity, 4-10
CI return variable, 4-5
coding in Pascal, 4-28
commands, 4-15
copy descriptor, 4-6
examples, 4-13
file masks, 4-11
file names and logons, 4-11
interrupting, 4-12
line continuation, 4-10
logons and VC+, 4-10
P-globals, 4-5
programmatic call, 4-28
protection mode and update time, 4-10
RTE file names and logons, 4-10
used interactively, 4-5, 4-10
used programmatically, 4-27
DSCOPY commands
? (HELP), 4-26
+CLEAR, 4-16
+DEFAULT, 4-17
+ECHO command, 4-19
+EX, 4-20
+LL, 4-21
+RU, 4-22
+SHOW, 4-23
+TRANSFER, 4-24
+WD, 4-25
DSCOPY option
ASCIL, 4-7
BINARY, 4-7
FIXED, 4-7
INTERCHANGE, 4-8
MOVE, 4-9
OVER, 4-9
QUIET, 4-9
REPLACE, 4-9
RSIZE, 4-8
SILENT, 4-9
SIZE, 4-8
STRIP, 4-8
VARIABLE, 4-8
DSCOPYBUILD, 4-29
DTACH, RPM, 6-5

E

end-to-end communication, 1-2
environment variable
$CMNDO, 3-14
$CMNDO_LINK, 3-14
ESCAPE command, TELNET, 2-12

ESCAPE parameter, TELNET SEND command, CLOSE command, 3-29

2-22 closing connection, 3-29, 3-62
establishing a connection, 5-4, 5-53, 5-55 command input file, 3-74
Ethernet, 1-7 command stack, display with / command, 3-20
example, RPM, 6-40 commands, 3-1, 3-15
examples, remote process management, 6-42 . 3-19
exception selecting, 5-65 1, 3-17
EXEC, RPM, 6-2, 6-4, 6-33 ?, 3-18, 3-42
EXIT command /, 3-20

FTP, 3-27, 3-36, 3-62 APPEND, 3-22

TELNET, 2-14 ASCII, 3-23

BELL, 3-24
F BINARY, 3-25

BYE, 3-27, 3-36, 3-62
file copying formats CD, 3-28

interchange format, 4-3 CLOSE, 3-29

transparent format, 4-3 DEBUG, 3-30
file descriptor parameters, 3-10 DELETE, 3-31
file masks, 4-11 DIR, 3-32

used to copy groups of files, 4-11 DL, 3-34

used to create target file names, 4-11 EXIT, 3-27, 3-36, 3-62
file name globbing, 3-39 FORM, 3-37
file transfer, 3-1 GET, 3-38, 3-64

FTP GLOB, 3-39

local to remote, 3-60, 3-69 HASH, 3-41
multiple files, 3-54 HELP, 3-42
remote to local, 3-38, 3-64 LCD, 3-43
multiple files, 3-49 LL, 3-44
file transfer protocol, 3-1 LS, 3-45
files MDELETE, 3-47
deleting in FTP, 3-31 MDIR, 3-48
multiple files, 3-47 MGET, 3-49

file name globbing, 3-39 MKDIR, 3-51

from FMGR cartridge, 1-10, 3-11 MLS, 3-52

record length specification, 1-11, 3-9 MODE, 3-53

renaming in FTP, 3-66 MPUT, 3-54

RTE-A, 1-10, 3-8 NLIST, 3-56

size specification, 1-11, 3-9 OPEN, 3-58

transferring in FTP, 3-38, 3-60, 3-64, 3-69 PROMPT, 3-59

multiple files, 3-49, 3-54 PUT, 3-60, 3-69

type specification, 1-11, 3-9 PWD, 3-61
FIXED, DSCOPY option, 4-7 QUIT, 3-27, 3-36, 3-62
flags parameter, 5-17, 6-5 QUOTE, 3-63

RPM, 6-5, 6-11, 6-16, 6-33 RECY, 3-38, 3-64
FMGR format REMOTEHELP, 3-65

namr, 1-11 RENAME, 3-66

namr syntax, 1-11 RMDIR, 3-67
FORM command, FTP, 3-37 RTEBIN, 3-68
FORTRAN 77, NetIPC, 5-83 SEND, 3-60, 3-69
FTP, 1-3, 3-1 SITE, 3-70

.. command, 3-19 STATUS, 3-71

! command, 3-17 STRUCT, 3-72

? command, 3-18, 3-42 SYSTEM, 3-73

/ command, 3-20 TR, 3-74

APPEND command, 3-22 TYPE, 3-76

ASCII command, 3-23 USER, 3-77

BELL command, 3-24 VERBOSE, 3-78

BINARY command, 3-25 DEBUG command, 3-30

BYE command, 3-27, 3-36, 3-62 DELETE command, 3-31

CD command, 3-28 DIR command, 3-32

Index-3

DL command, 3-34

EXIT command, 3-27, 3-36, 3-62

file transfer, 3-38

FORM command, 3-37
GET command, 3-38, 3-64
GLOB command, 3-39
HASH command, 3-41
HELP command, 3-42

help information, 3-8, 3-18, 3-42

invoking, 3-2

LCD command, 3-43
LL command, 3-44
log file, 3-44

LS command, 3-45

MDELETE command, 3-47

MDIR command, 3-48
MGET command, 3-49
MKDIR command, 3-51
MLS command, 3-52
MODE command, 3-53
MPUT command, 3-54
NLIST command, 3-56
OPEN command, 3-58

opening connection to remote host, 3-58

operation, 3-5

PROMPT command, 3-59
PUT command, 3-60, 3-69
PWD command, 3-61

QUIT command, 3-27, 3-36, 3-62

QUOTE command, 3-63

RECV command, 3-38, 3-64
REMOTEHELP command, 3-65

RENAME command, 3-66
RMDIR command, 3-67
RTEBIN command, 3-68

SEND command, 3-60, 3-69

SITE command, 3-70
STATUS command, 3-71
status information, 3-71
STRUCT command, 3-72
SYSTEM command, 3-73
terminating, 3-7, 3-27, 3-36
TR command, 3-74
transferring files, 3-11
TYPE command, 3-76
USER command, 3-77
VERBOSE command, 3-78
verbose output, 3-78

FTP sample session, 3-5

G

gathered write, 5-21

GET command, FTP, 3-38, 3-64

GLOB command, FTP, 3-39
globbing, FTP, 3-3

Index-4

H

HASH command, FTP, 3-41
HDLC, 1-7
HELP command

FTP, 3-42

TELNET, 2-15
high throughput, 5-67
host names, 1-8
HP 1000 communication

file transfer, 3-1

FTP, 3-1

TELNET, 2-1

virtual terminal, 2-1
HP 3000, 5-25

NetIPC, 5-1, 5-25, 5-26, 5-27, 5-29, 5-37, 5-41,

5-44, 5-59, 5-62, 5-68, 5-71

HP 9000, 5-25

NetIPC, 5-1, 5-25, 5-26, 5-27, 5-28, 5-37, 5-41,

5-44, 5-59, 5-62, 5-68, 5-71

HP 9000 communication

file transfer, 3-1

FTP, 3-1

TELNET, 2-1

virtual terminal, 2-1

ID segment, RPM, 6-23, 6-25
IEEE 802.3, 1-7
independent RPM programs
remote process management, 6-15
terminating, 6-15
information utility, NSINEF, 1-9
InitOpt, 5-77, 6-5
example, 6-20
RPM, 6-20
input file, FTP, 3-74
interactive network file transfer, 4-5
INTERCHANGE, DSCOPY option, 4-8
interchange format, 4-3
RTE-A type 6 files, 4-3, 4-7, 4-8
International Standards Organization, 1-1
interprocess communication
See also Network IPC
PTOP, 5-1
INTERRUPT parameter, TELNET SEND com-
mand, 2-22
INTERUPT command, TELNET, 2-16
IP, internet protocol, 1-9
IP addresses, 1-9
IP parameter, TELNET SEND command, 2-23
IPC. See Network IPC
IPCConnect, 5-35
cross-system, 5-37
IPCControl, 5-38
IPCCreate, 5-40
cross-system, 5-41
IPCDest, 5-42
cross-system, 5-44
IPCGet, 5-45

IPCGive, 5-46
IPCLookUp, 5-48
race condition, 5-49
IPCName, 5-50
naming path report descriptors, 5-51
randomly generated names, 5-50
IPCNamErase, 5-52
IPCRecv, 5-53
asynchronous 1/O, 5-56
cross-system, 5-59
establishing a connection, 5-53, 5-55
normal reading, 5-55
preview reading, 5-55
receiving data, 5-55
scattered reading, 5-55
synchronous I/O, 5-56
waiting for data, 5-53
IPCRecvCn, 5-60
cross-system, 5-62
synchronous vs. asynchronous 1/O, 5-61
IPCSelect, 5-63
called in FORTRAN program, 5-66
called in Pascal program, 5-66
detecting connection requests, 5-65
example, 5-81
exception selecting, 5-65
exceptional sockets, 5-64
performing a read select, 5-65
performing a write select, 5-65
readable sockets, 5-64
writeable sockets, 5-64
IPCSend, 5-67
cross-system, 5-68
high throughput, 5-67
synchronous vs. asynchronous I/O, 5-68
IPCShutDown, 5-70
cross-system, 5-71
releasing a call socket, 5-70
releasing a path report descriptor, 5-71
releasing a VC socket descriptor, 5-71
ISO OSI model, 1-1

LAN, 1-7

layers, 1-1

LCD command, FTP, 3-43
levels, 1-1

LINK, command editing, 3-14
links, 1-1, 1-7

LL command, FTP, 3-44
loading, RPM, 6-4

local area network, 1-7

log file, FTP, 3-2, 3-44

login, RPM, 6-10

looking up a call socket name, 5-6
LS command, FTP, 3-45

MDELETE command, FTP, 3-47
MDIR command, FTP, 3-48
MGET command, FTP, 3-49
MIL-STD-1782, 1-3
MKDIR command, FTP, 3-51
MLS command, FTP, 3-52
MODE command

FTP, 3-53

TELNET, 2-18
modify code partition, RPM, 6-28
modify data partition, RPM, 6-29
modify VMA size, 6-27
MOVE, DSCOPY option, 4-9
MPE-V, 5-25
MPE-XL, 5-25
MPUT command, FTP, 3-54

N

naming a call socket, 5-5
namr, 1-11
syntax, 1-11
NetIPC, 1-4
See also Network IPC
cross-system, 5-25, 5-27, 5-28, 5-29, 5-31
cross-system calls, 5-26
IPCControl, 5-38
RPM, 6-2, 6-5, 6-12
NetIPC calls
AddOpt, 5-73
AdrOf, 5-75
example of use, 5-80, 5-83, 5-122
InitOpt, 5-77
IPCCreate, 5-40
IPCDest, 5-42
IPCGet, 5-45
IPCGive, 5-46
IPCLookUp, 5-48
IPCName, 5-50
IPCNamErase, 5-52
IPCRecv, 5-53
IPCRecvCn, 5-60
IPCSelect, 5-63
IPCSend, 5-67
IPCShutDown, 5-70
ReadOpt, 5-79
RPM, 6-5
special, 5-72
NetIPC common parameters, 5-17
NetIPC syntax conventions, 5-34
network address, 1-9
network architecture, 1-1
network file transfer, 1-3, 1-4, 4-1
? (HELP) command, 4-26
+CLEAR, 4-16
+DEFAULT, 4-17
+ECHO, 4-19
+EX command, 4-20
+LL command, 4-21

Index-5

+RU command, 4-22 performing a write select, 5-65

+SHOW command, 4-23 porting programs, 5-1, 5-25
+TRANSFER command, 4-24 program examples, 5-80, 5-83, 5-122
+WD command, 4-25 PTOP, 5-1
copy descriptor, 4-6 read and write thresholds, 5-14
DS/1000-1V files, 4-14 receiving a connection request, 5-7
DSCOPY commands, 4-15 receiving data, 5-55
DSCOPYBUILD, 4-29 requesting a connection, 5-6
features, 4-1 result parameter, 5-23
file copying formats, 4-3 scheduling remote process, 5-4
file names and logons, 4-11 sending and receiving data, 5-10
interactive, 4-5 server example, 5-80, 5-81
optimizing performance, 4-13 shutting down a connection, 5-10
programmatic, 4-27 socket names, 5-3
programmatic examples, 4-32 socket registry, 5-3
RTE-A type 6 files, 4-3, 4-7, 4-8 sockets, 5-2
running DSCOPY, 4-5 stream mode, 5-16
three-node model, 4-2 synchronous, 5-14
using file masks, 4-11 syntax conventions, 5-34
network interprocess communication, 1-3 telephone analogy, 5-2
Network IPC timing and time-outs, 5-11
asynchronous, 5-14 VC socket descriptor, 5-3
call socket descriptor, 5-3 network IPC, 1-4
call summary, 5-13 Network layer, 1-2
calls, 5-35 network management services and features, 1-7
checking connection status, 5-8 NFT, 1-4
client example, 5-82 See also network file transfer
common parameters, 5-17 NLIST command, FTP, 3-56
connection dialogue, 5-4 node address, 1-9
connections, 5-2, 5-4 node names, 1-8, 1-9
creating a call socket, 5-4 domain, 1-8
cross-system, 5-1, 5-25, 5-27, 5-28, 5-29, 5-31, organization, 1-8
5-37, 5-41, 5-44, 5-59, 5-62, 5-68, 5-71, 5-83 syntax, 5-23
HP 3000, 5-27 nodename
HP 9000, 5-27 RPM, 6-7, 6-10
PC, 5-27 RPMKIill, 6-41
data parameter, 5-21 nodename parameter, 5-17
descriptors, 5-3 RPM, 6-5
detecting connection requests, 5-65 nodes, 1-1 .
establishing a connection, 5-55 NS common services, remote process management,
exception selecting, 5-65 6-1 .
flags parameter, 5-17 NS-ARPA common services, 1-3
FORTRAN 77, 5-18, 5-83 BSD IPC, 1-3
high throughput, 5-67 FTP 1-3
HP 3000, 5-1, 5-25, 5-26, 5-29, 5-37, 5-41, 5-44, network file transfer, 1-3 o
5-59, 5-62, 5-68, 5-71 network interprocess communication, 1-3
HP 9000, 5-1, 5-25, 5-26, 5-28, 5-37, 5-41, 5-44, remote process management, 1-3
5-59, 5-62, 5-68, 5-71 TELNET, 1-3 ,
IPCConnect, 5-35 NS-ARPA/1000 user services, 1-3
looking up call socket name, 5-6 NSINF, 1-9
maximum number of clients, 5-80
maximum number of sockets, 5-26 (o)
naming a call socket, 5-5
opt parameter, 5-19 OPEN command
Pascal, 5-18, 5-34, 5-83 FTP, 3-58
path report descriptor, 5-3 TELNET, 2-19
path reports, 5-3 Open Systems Interconnection model, 1-1
PC, 5-1, 5-25, 5-26, 5-31, 5-37, 5-41, 5-44, 5-59, opt array, RPM options, 6-13
5-62, 5-68, 5-71 opt parameter, 5-19
performing a read select, 5-65 adding an argument, 5-73

Index-6

initialization, 5-77
obtaining option code and data, 5-79
OPTARGUMENTS structure, 5-21
RPM, 6-5, 6-12
structure, 5-20
opt parameters, 5-17
option groups, RPM, 6-19
options
RPM, 6-13, 6-18
RPMCreate, 6-18
options groups, RPM, 6-18
organization, in node names, 1-8
OSI model, 1-1
Application layer, 1-2
Data Link layer, 1-2
Network layer, 1-2
Physical layer, 1-2
Presentation layer, 1-2
Session layer, 1-2
Transport layer, 1-2
OVER, DSCOPY option, 4-9

P

parameters, RPM, 6-5
parent directory, accessing in FTP, 3-19
parent program

RPM, 6-4, 6-14

session-sharing, 6-16
partition

reserved, 6-24

RPM, 6-24
Pascal, NetIPC, 5-83
passing strings, RPM, 6-21
path report descriptor, 5-3
path reports, 5-3
PC, 5-25

NetIPC, 5-1, 5-25, 5-26, 5-27, 5-31, 5-37, 5-41,

5-44, 5-59, 5-62, 5-68, 5-71

performing a read select, 5-65
performing a write select, 5-65
Physical layer, 1-2
porting NetIPC programs, 5-1, 5-25
Presentation layer, 1-2
process communication. See Network IPC
program descriptor, RPM, 6-7, 6-12, 6-14, 6-41
program name, RPM, 6-10
program priority, 1-8

RPM, 6-25
program scheduling, RPM, 6-33
program-to-program communication, 1-4
PROMPT command, FTP, 3-59
protocol

FTP, 1-3

TELNET, 1-3, 2-1
protocols, 1-1
PTOP, 1-4

interprocess communication, 5-1
PUT command, FTP, 3-60
PWD command, FTP, 3-61

Q

queue program scheduling, RPM, 6-36
QUIET, DSCOPY option, 4-9
QUIT command
FTP, 3-27, 3-36, 3-62
TELNET, 2-14, 2-20
QUOTE command, FTP, 3-63

R

race condition, 5-11, 5-49
read and write thresholds, 5-14
ReadOpt, 5-79, 6-5
receiving a connection request, 5-7
receiving data, 5-55
RECV command, FTP, 3-38, 3-64
REMAT, 1-4
remote file access, 1-4
remote process management, 1-3, 1-4, 5-17, 6-1
dependent programs, 6-15
example, 6-42
flags parameter, 6-5
independent programs, 6-15
REMOTEHELP command, FTP, 3-65
RENAME command, FTP, 3-66
REPLACE, DSCOPY option, 4-9
request code, RPM, 6-7
requesting a connection, 5-6
resource sharing, 1-1
restore program, 6-23
result parameter, 5-17, 5-23
RPM, 6-5
RFA, 1-4
RMDIR command, FTP, 3-67
RMOTE, 1-4
RPM, 1-4
See also remote process management
AddOpt, 6-5, 6-19, 6-20
AddOpt example, 6-34, 6-37, 6-40
assign partition, 6-24
ATACH, 6-5
CDS, 6-3, 6-4, 6-24, 6-39
CDS program, 6-14
child program, 6-1, 6-4, 6-21
controlling programs, 6-9
definition, 6-1
dependent child, 6-12
DEXEC, 6-2
DTACH, 6-5
EXEC, 6-2, 6-4, 6-33
flags parameter, 6-5, 6-11, 6-16, 6-33
ID segment, 6-23, 6-25
InitOpt, 6-5, 6-20
login, 6-10
modify code partition, 6-28
modify data partition, 6-29
NetIPC, 6-2, 6-5, 6-12
NetIPC calls, 6-5
nodename, 6-7, 6-10
nodename parameter, 6-5

Index-7

opt parameter, 6-12
option, 6-24
option groups, 6-18, 6-19
options, 6-13, 6-23
parameters, 6-5
parent program, 6-1, 6-4, 6-14
passing strings, 6-21
program descriptor, 6-7, 6-12, 6-14, 6-41
program name, 6-10
program priority, 6-25
program scheduling, 6-33
queue program scheduling, 6-36
ReadOpt, 6-5
request code, 6-7
restore program, 6-23
result parameter, 6-5
RPMControl, 6-3, 6-7
RPMCreate, 6-3, 6-22
RPMCreate options, 6-13
RPMGetString, 6-3, 6-21
RPMKill, 6-3, 6-41
RTE resources, 6-4
schedule with wait, 6-18
scheduling programs, 6-13
sending strings, 6-14
session, 6-13
session-sharing, 6-11, 6-16
stack size, 6-4
summary of calls, 6-3
syntax conventions, 6-5
terminate a program, 6-4, 6-14, 6-41
terminating programs, 6-14
time scheduling, 6-31
VMA size, 6-27
wait for child, 6-11
RPMControl, 6-4
RPMCreate, 6-4, 6-10
options, 6-13
RPMCreate options, 6-18
RPMGetString, 6-21, 6-39
RPMKIill, 6-4, 6-41
nodename, 6-41
RSIZE, DSCOPY option, 4-8
RTE resources, RPM, 6-4
RTE-A type 6 files, 4-3, 4-7, 4-8
RTEBIN command, FTP, 3-68
RUN command, TELNET, 2-21

S

scattered read, 5-21

schedule with wait, RPM, 6-18
scheduling program, RPM, 6-2
scheduling programs, RPM, 6-13

send and receive sizes, cross-system, 5-28, 5-29,

5-31

Index-8

SEND command
FTP, 3-60, 3-69
TELNET, 2-22
sending and receiving data, 5-10
stream mode, 5-16
session, RPM, 6-13
Session layer, 1-2
session-sharing
parent program, 6-16
RPM, 6-11, 6-16
shutting down a connection, 5-10
SILENT, DSCOPY option, 4-9
SITE command, FTP, 3-70
SIZE, DSCOPY option, 4-8
socket modes, 5-14
socket names, 5-3
syntax, 5-23
socket registry, 5-3
socket sharing, cross-system, 5-28
socketname parameter, 5-17
sockets
call, 5-5
description, 5-2
detecting connection requests, 5-65
exception selecting, 5-65
exceptional, 5-64
maximum number, 5-26
naming, 5-5
performing a read select, 5-65
performing a write select, 5-65
readable, 5-64
shutting down a call socket, 5-70

shutting down a path report descriptor, 5-71

shutting down a VC socket, 5-71
synchronous and asynchronous, 5-14
virtual circuit, 5-6
writeable, 5-64
special NetIPC calls, 5-72
stack size, RPM, 6-4
STATUS command
FTP, 3-71
TELNET, 2-24
stream mode, 5-16
strings
passing, 6-39
RPM, 6-14, 6-39
STRIP, DSCOPY option, 4-8
STRUCT command, FTP, 3-72
summary of NetIPC calls, 5-13
supported connectivities, 1-5

synchronous and asynchronous socket modes, 5-14

synchronous I/O, 5-14
IPCRecv, 5-56

synchronous time-out, 5-11

syntax, RPM, 6-5

SYSTEM command, FTP, 3-73

TCP. See transmission control protocol
TCP protocol address, cross-system, 5-28, 5-29,

5-31
TELNET, 1-3, 2-1
? command, 2-10
block mode, 2-5
CLOSE command, 2-11
commands, 2-9
connectivity considerations, 2-2
ESCAPE command, 2-12
EXIT command, 2-14
HELP command, 2-15
INTERUPT command, 2-16
MODE command, 2-18
OPEN command, 2-19
QUIT command, 2-14, 2-20
RUN command, 2-21
SEND command, 2-22
STATUS command, 2-24
using, 2-6
TELNET commands, 2-9
?,2-10
CLOSE, 2-11
ESCAPE, 2-12
EXIT, 2-14
HELP, 2-15
INTERUPT, 2-16
MODE, 2-18
OPEN, 2-19
QUIT, 2-14, 2-20
RUN, 2-21
SEND, 2-22
STATUS, 2-24
TELNET operation, 2-8
TELNET protocol, 2-1
TELNET SEND commands
AYT, 2-22
BREAK, 2-22
ESCAPE, 2-22
INTERRUPT, 2-22
IP, 2-22
terminal settings, 2-2
DEC VAX computers, 2-3
terminate a program
RPM, 6-4, 6-14, 6-41
RPMKill, 6-4, 6-14
terminating programs, RPM, 6-14
terminating RPM programs
dependent programs, 6-15
independent programs, 6-15
terminiating FTP, temporarily, 3-17
three-node model, 4-2
consumer, 4-2
initiator, 4-2
producer, 4-2
time scheduling, RPM, 6-31
timing and time-outs, 5-11

TR command, FTP, 3-74
transfer file, 3-75
transfer file, FTP, 3-2, 3-74, 3-75

transmission control protocol, 5-2, 5-16

transparent format, 4-3
Transport layer, 1-2
TYPE command, FTP, 3-76

U

USER command, FTP, 3-77
user services
distributed executive, 1-4
FTP, 1-3
network file transfer, 1-4
network IPC, 1-4

program-to-program communication, 1-4

REMAT, 1-4
remote file access, 1-4
remote process management, 1-4
RMOTE, 1-4
TELNET, 1-3
utility subroutines, 1-4
utility subroutines, 1-4

\'}

VARIABLE, DSCOPY option, 4-8
VC socket, 5-2, 5-6
VC socket descriptor, 5-3
vectored data, 5-22
VERBOSE command, FTP, 3-78
verbose output, FTP, 3-78
virtual circuit, 5-2
virtual circuit connection, 5-2, 5-6
status, 5-8
virtual circuit socket, 5-2
virtual circuit socket descriptor, 5-3
virtual terminal, 1-3, 2-1
TELNET, 1-3
VMA programs, RPM, 6-26
VMA size, RPM, 6-27

w

wait for child, RPM, 6-11
wild cards, FTP, 3-39
working directory

FTP, setting with CD command, 3-28

RPM, 6-22

RPMCreate option, 6-22
working set size

modify, 6-26

RPM, 6-26
write thresholds, 5-14

X
X.25, 1-7

Index-9

	Title page
	Preface
	Conventions Used in this Manual
	Table of Contents
	Chapter 1 - Introduction
	Chatper 2 - TELNET
	Chapter 3 - FTP
	Chapter 4 - Network File Transfer
	Chapter 5 - Network Interprocess Communication
	Chapter 5 - Remote Process Management
	Appendix A - NFT-FTP Comparison
	Appendix B - Porting NetIPC Programs
	Glossary
	Bibliography
	Index

